Michael Murphy

List of Publications by Citations

Source: https://exaly.com/author-pdf/7715180/michael-murphy-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

426 109 43,920 197 h-index g-index citations papers 8.02 450 50,944 9.5 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
426	How mitochondria produce reactive oxygen species. <i>Biochemical Journal</i> , 2009 , 417, 1-13	3.8	4970
425	Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. <i>Nature</i> , 2014 , 515, 431-435	50.4	1360
424	Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. <i>Cell</i> , 2016 , 167, 457-470.e13	56.2	878
423	Targeting antioxidants to mitochondria by conjugation to lipophilic cations. <i>Annual Review of Pharmacology and Toxicology</i> , 2007 , 47, 629-56	17.9	869
422	Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. <i>Journal of Biological Chemistry</i> , 2001 , 276, 4588-96	5.4	794
421	Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 15038-43	11.5	611
420	Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. <i>Nature</i> , 2018 , 556, 113-117	50.4	609
419	Delivery of bioactive molecules to mitochondria in vivo. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 5407-12	11.5	551
418	Unraveling the biological roles of reactive oxygen species. <i>Cell Metabolism</i> , 2011 , 13, 361-366	24.6	542
417	Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. <i>FASEB Journal</i> , 2005 , 19, 1088-95	0.9	499
416	The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. <i>Journal of Cell Biology</i> , 2007 , 177, 1029-36	7.3	441
415	Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. <i>Nature Medicine</i> , 2013 , 19, 753-9	50.5	437
414	DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. <i>Cell</i> , 2012 , 149, 847-59	56.2	432
413	Complex I is the major site of mitochondrial superoxide production by paraquat. <i>Journal of Biological Chemistry</i> , 2008 , 283, 1786-98	5.4	388
412	A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson@ disease. <i>Movement Disorders</i> , 2010 , 25, 1670-4	7	376
411	A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury. <i>Cell Metabolism</i> , 2016 , 23, 254-63	24.6	369
410	Targeting lipophilic cations to mitochondria. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2008 , 1777, 1028-31	4.6	368

409	Drug delivery to mitochondria: the key to mitochondrial medicine. <i>Advanced Drug Delivery Reviews</i> , 2000 , 41, 235-50	18.5	356
408	Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. <i>Diabetes</i> , 2004 , 53 Suppl 1, S110-8	0.9	353
407	Redox Homeostasis and Mitochondrial Dynamics. <i>Cell Metabolism</i> , 2015 , 22, 207-18	24.6	350
406	Mitochondrial pharmacology. <i>Trends in Pharmacological Sciences</i> , 2012 , 33, 341-52	13.2	349
405	Animal and human studies with the mitochondria-targeted antioxidant MitoQ. <i>Annals of the New York Academy of Sciences</i> , 2010 , 1201, 96-103	6.5	348
404	Selective targeting of an antioxidant to mitochondria. <i>FEBS Journal</i> , 1999 , 263, 709-16		348
403	Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells. <i>Nature Medicine</i> , 2001 , 7, 1111-7	50.5	345
402	Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer@disease neurons. <i>Journal of Alzheimeris Disease</i> , 2010 , 20 Suppl 2, S609-31	4.3	335
401	Reversible glutathionylation of complex I increases mitochondrial superoxide formation. <i>Journal of Biological Chemistry</i> , 2003 , 278, 19603-10	5.4	318
400	Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE. <i>Journal of Biological Chemistry</i> , 2004 , 279, 47939-51	5.4	317
399	Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants. <i>Journal of Biological Chemistry</i> , 2002 , 277, 47129-35	5.4	313
398	Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. <i>Biochemistry (Moscow)</i> , 2005 , 70, 222-30	2.9	308
397	Mitochondria as a therapeutic target for common pathologies. <i>Nature Reviews Drug Discovery</i> , 2018 , 17, 865-886	64.1	301
396	Nitric oxide and cell death. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1999 , 1411, 401-14	4.6	297
395	Mitochondria-targeted small molecule therapeutics and probes. <i>Antioxidants and Redox Signaling</i> , 2011 , 15, 3021-38	8.4	294
394	Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. <i>FASEB Journal</i> , 2003 , 17, 1972-4	0.9	285
393	The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer@ disease. <i>Journal of Neuroscience</i> , 2011 , 31, 15703-15	6.6	278
392	Selective targeting of bioactive compounds to mitochondria. <i>Trends in Biotechnology</i> , 1997 , 15, 326-30	15.1	276

391	Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. <i>Journal of Biological Chemistry</i> , 2005 , 280, 21295-312	5.4	267
390	Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. <i>Hypertension</i> , 2009 , 54, 322-8	8.5	260
389	Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: studies using a mitochondria-targeted spin trap derived from alpha-phenyl-N-tert-butylnitrone. <i>Journal of Biological Chemistry</i> , 2003 , 278, 48534-45	5.4	256
388	The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. <i>Liver International</i> , 2010 , 30, 1019-26	7.9	254
387	Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. <i>Nature</i> , 2016 , 535, 561-5	50.4	248
386	Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. <i>Journal of Allergy and Clinical Immunology</i> , 2015 , 136, 769-80	11.5	241
385	Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. <i>Antioxidants and Redox Signaling</i> , 2012 , 16, 476-95	8.4	238
384	Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. <i>Cell Metabolism</i> , 2011 , 13, 340-50	24.6	231
383	Inhibition of complex I of the electron transport chain causes O2mediated mitochondrial outgrowth. <i>American Journal of Physiology - Cell Physiology</i> , 2005 , 288, C1440-50	5.4	227
382	Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan. <i>Cell Metabolism</i> , 2016 , 23, 725-34	24.6	220
381	Antioxidant and prooxidant properties of mitochondrial Coenzyme Q. <i>Archives of Biochemistry and Biophysics</i> , 2004 , 423, 47-56	4.1	212
380	Accumulation of succinate controls activation of adipose tissue thermogenesis. <i>Nature</i> , 2018 , 560, 102-	1 9 6.4	204
379	Mitochondrial redox signalling at a glance. <i>Journal of Cell Science</i> , 2012 , 125, 801-6	5.3	204
378	Control of electron flux through the respiratory chain in mitochondria and cells. <i>Biological Reviews</i> , 1987 , 62, 141-93	13.5	204
377	Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. <i>British Journal of Anaesthesia</i> , 2013 , 110, 472-80	5.4	202
376	The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis. <i>Free Radical Biology and Medicine</i> , 2008 , 45, 1559-65	7.8	195
375	Dysregulated metabolism contributes to oncogenesis. Seminars in Cancer Biology, 2015, 35 Suppl, S129-	-S(125 7 0	189
374	Metformin Inhibits the Production of Reactive Oxygen Species from NADH:Ubiquinone Oxidoreductase to Limit Induction of Interleukin-1 [(IL-1)] and Boosts Interleukin-10 (IL-10) in Lipopolysaccharide (LPS)-activated Macrophages. <i>Journal of Biological Chemistry</i> , 2015 , 290, 20348-59	5.4	184

(2002-2009)

373	A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 10764-9	11.5	184
372	Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells. <i>FEBS Letters</i> , 2000 , 475, 267-72	3.8	183
371	Designing a broad-spectrum integrative approach for cancer prevention and treatment. <i>Seminars in Cancer Biology</i> , 2015 , 35 Suppl, S276-S304	12.7	179
370	Chronic Supplementation With a Mitochondrial Antioxidant (MitoQ) Improves Vascular Function in Healthy Older Adults. <i>Hypertension</i> , 2018 , 71, 1056-1063	8.5	179
369	Prevention of diabetic nephropathy in Ins2(+/)?(AkitaJ) mice by the mitochondria-targeted therapy MitoQ. <i>Biochemical Journal</i> , 2010 , 432, 9-19	3.8	176
368	Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 13063-13068	11.5	175
367	Mitochondria-derived reactive oxygen species mediate blue light-induced death of retinal pigment epithelial cells. <i>Photochemistry and Photobiology</i> , 2004 , 79, 470-5	3.6	173
366	A redox switch in angiotensinogen modulates angiotensin release. <i>Nature</i> , 2010 , 468, 108-11	50.4	171
365	DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. <i>Circulation Research</i> , 2010 , 107, 1021-31	15.7	168
364	Glutathionylation of mitochondrial proteins. Antioxidants and Redox Signaling, 2005, 7, 999-1010	8.4	166
363	Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. <i>Nature Reviews Drug Discovery</i> , 2020 , 19, 609-633	64.1	166
362	Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria. <i>Journal of Biological Chemistry</i> , 2006 , 281, 10056-65	5.4	164
361	Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage. <i>FEBS Journal</i> , 2010 , 277, 1465-80	5.7	163
360	Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. <i>Journal of Biological Chemistry</i> , 2007 , 282, 14708-18	5.4	161
359	MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. <i>Aging Cell</i> , 2003 , 2, 141-3	9.9	161
358	Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. <i>Circulation</i> , 2013 , 128, 702-12	16.7	160
357	Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice. <i>Free Radical Biology and Medicine</i> , 2010 , 48, 161-72	7.8	157
356	Specific modification of mitochondrial protein thiols in response to oxidative stress: a proteomics approach. <i>Journal of Biological Chemistry</i> , 2002 , 277, 17048-56	5.4	157

355	Mitochondrially targeted compounds and their impact on cellular bioenergetics. <i>Redox Biology</i> , 2013 , 1, 86-93	11.3	155
354	A mitochondria-targeted nitroxide is reduced to its hydroxylamine by ubiquinol in mitochondria. <i>Free Radical Biology and Medicine</i> , 2008 , 44, 1406-19	7.8	153
353	Peroxynitrite: a biologically significant oxidant. <i>General Pharmacology</i> , 1998 , 31, 179-86		150
352	Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage. <i>Journal of Biological Chemistry</i> , 2008 , 283, 24801-15	5.4	150
351	Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant. FEBS Letters, 2004, 571, 9-16	3.8	148
350	Coupling Krebs cycle metabolites to signalling in immunity and cancer. <i>Nature Metabolism</i> , 2019 , 1, 16-3	3 3 4.6	148
349	Rapid and extensive uptake and activation of hydrophobic triphenylphosphonium cations within cells. <i>Biochemical Journal</i> , 2008 , 411, 633-45	3.8	146
348	Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly. <i>Journal of Biological Chemistry</i> , 2018 , 293, 17208-17217	5.4	146
347	Ubiad1 is an antioxidant enzyme that regulates eNOS activity by CoQ10 synthesis. Cell, 2013, 152, 504-	1 § 6.2	144
346	Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. <i>Nucleic Acids Research</i> , 2008 , 36, 3926-38	20.1	144
345	Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. <i>Biochemical Journal</i> , 1996 , 318 (Pt 2), 401-7	3.8	141
344	Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice. <i>Journal of Physiology</i> , 2014 , 592, 2549-61	3.9	138
343	Macrophage-Derived Extracellular Succinate Licenses Neural Stem Cells to Suppress Chronic Neuroinflammation. <i>Cell Stem Cell</i> , 2018 , 22, 355-368.e13	18	136
342	Mutant KRas-Induced Mitochondrial Oxidative Stress in Acinar Cells Upregulates EGFR Signaling to Drive Formation of Pancreatic Precancerous Lesions. <i>Cell Reports</i> , 2016 , 14, 2325-36	10.6	136
341	Release of apoptogenic proteins from the mitochondrial intermembrane space during the mitochondrial permeability transition. <i>FEBS Letters</i> , 1997 , 418, 282-6	3.8	136
340	Quantitation and origin of the mitochondrial membrane potential in human cells lacking mitochondrial DNA. <i>FEBS Journal</i> , 1999 , 262, 108-16		136
339	Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. <i>Nucleic Acids Research</i> , 2001 , 29, 1852-63	20.1	135
338	Krebs Cycle Reimagined: The Emerging Roles of Succinate and Itaconate as Signal Transducers. <i>Cell</i> , 2018 , 174, 780-784	56.2	131

337	Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation. <i>Cell Research</i> , 2011 , 21, 817-34	24.7	128	
336	Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. <i>Redox Biology</i> , 2015 , 5, 163-168	11.3	127	
335	The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/-/ApoE-/- mice. <i>Free Radical Biology and Medicine</i> , 2012 , 52, 841-9	7.8	127	
334	Mitochondrial reactive oxygen species regulate the temporal activation of nuclear factor kappaB to modulate tumour necrosis factor-induced apoptosis: evidence from mitochondria-targeted antioxidants. <i>Biochemical Journal</i> , 2005 , 389, 83-9	3.8	127	
333	Bioenergetic consequences of accumulating the common 4977-bp mitochondrial DNA deletion. <i>FEBS Journal</i> , 1998 , 257, 192-201		126	
332	Slip and leak in mitochondrial oxidative phosphorylation. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1989 , 977, 123-41	4.6	123	
331	Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production. <i>Biochemical Society Symposia</i> , 2004 , 203-13		123	
330	Mitochondria-targeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasome-mediated inflammatory cytokines. <i>BMC Medicine</i> , 2013 , 11, 178	11.4	121	
329	Detection of reactive oxygen species-sensitive thiol proteins by redox difference gel electrophoresis: implications for mitochondrial redox signaling. <i>Journal of Biological Chemistry</i> , 2007 , 282, 22040-51	5.4	121	
328	Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease. <i>Human Molecular Genetics</i> , 2010 , 19, 3413-29	5.6	119	
327	Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation. <i>Biochemical Journal</i> , 2010 , 430, 49-59	3.8	119	
326	Control of mitochondrial superoxide production by reverse electron transport at complex I. <i>Journal of Biological Chemistry</i> , 2018 , 293, 9869-9879	5.4	119	
325	Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 19689-94	11.5	117	
324	Amyloid Enduced impairments in hippocampal synaptic plasticity are rescued by decreasing mitochondrial superoxide. <i>Journal of Neuroscience</i> , 2011 , 31, 5589-95	6.6	115	
323	Beta-amyloid mediated nitration of manganese superoxide dismutase: implication for oxidative stress in a APPNLH/NLH X PS-1P264L/P264L double knock-in mouse model of Alzheimer@ disease. <i>American Journal of Pathology</i> , 2006 , 168, 1608-18	5.8	115	
322	How mitochondrial damage affects cell function. <i>Journal of Biomedical Science</i> , 2002 , 9, 475-487	13.3	114	
321	Peroxynitrite causes calcium efflux from mitochondria which is prevented by Cyclosporin A. <i>FEBS Letters</i> , 1994 , 345, 237-40	3.8	114	
320	KSR2 mutations are associated with obesity, insulin resistance, and impaired cellular fuel oxidation. <i>Cell</i> , 2013 , 155, 765-77	56.2	113	

319	Mitochondrial dysfunction indirectly elevates ROS production by the endoplasmic reticulum. <i>Cell Metabolism</i> , 2013 , 18, 145-6	24.6	111
318	Understanding and preventing mitochondrial oxidative damage. <i>Biochemical Society Transactions</i> , 2016 , 44, 1219-1226	5.1	109
317	Peroxynitrite formed by simultaneous nitric oxide and superoxide generation causes cyclosporin-A-sensitive mitochondrial calcium efflux and depolarisation. <i>FEBS Journal</i> , 1995 , 234, 231-9		109
316	MitoQ administration prevents endotoxin-induced cardiac dysfunction. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2009 , 297, R1095-102	3.2	108
315	The effects of exogenous antioxidants on lifespan and oxidative stress resistance in Drosophila melanogaster. <i>Mechanisms of Ageing and Development</i> , 2006 , 127, 356-70	5.6	108
314	Mitochondrial oxidative stress and the metabolic syndrome. <i>Trends in Endocrinology and Metabolism</i> , 2012 , 23, 429-34	8.8	105
313	Synthesis and characterization of a triphenylphosphonium-conjugated peroxidase mimetic. Insights into the interaction of ebselen with mitochondria. <i>Journal of Biological Chemistry</i> , 2005 , 280, 24113-26	5.4	105
312	Antioxidant and pro-oxidant properties of pyrroloquinoline quinone (PQQ): implications for its function in biological systems. <i>Biochemical Pharmacology</i> , 2003 , 65, 67-74	6	105
311	The @nitoflash@robe cpYFP does not respond to superoxide. <i>Nature</i> , 2014 , 514, E12-4	50.4	103
310	Targeting mitochondria-derived reactive oxygen species to reduce epithelial barrier dysfunction and colitis. <i>American Journal of Pathology</i> , 2014 , 184, 2516-27	5.8	103
309	Mitochondrial uncouplers with an extraordinary dynamic range. <i>Biochemical Journal</i> , 2007 , 407, 129-40	3.8	102
308	Mitochondrial ROS Production Protects the Intestine from Inflammation through Functional M2 Macrophage Polarization. <i>Cell Reports</i> , 2017 , 19, 1202-1213	10.6	101
307	Prevention of mitochondrial oxidative damage using targeted antioxidants. <i>Annals of the New York Academy of Sciences</i> , 2002 , 959, 263-74	6.5	100
306	Mitochondria-targeted antioxidants as therapies. <i>Discovery Medicine</i> , 2011 , 11, 106-14	2.5	100
305	Antioxidants as therapies: can we improve on nature?. Free Radical Biology and Medicine, 2014, 66, 20-3	7.8	99
304	Using the mitochondria-targeted ratiometric mass spectrometry probe MitoB to measure H2O2 in living Drosophila. <i>Nature Protocols</i> , 2012 , 7, 946-58	18.8	98
303	Mitochondrial targeting of quinones: therapeutic implications. <i>Mitochondrion</i> , 2007 , 7 Suppl, S94-102	4.9	98
302	Measurements of protein carbonyls, ortho- and meta-tyrosine and oxidative phosphorylation complex activity in mitochondria from young and old rats. <i>Free Radical Biology and Medicine</i> , 2001 , 31, 181-90	7.8	98

(2006-2014)

301	Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis. <i>Free Radical Biology and Medicine</i> , 2014 , 70, 204-13	7.8	97
300	Selective uncoupling of individual mitochondria within a cell using a mitochondria-targeted photoactivated protonophore. <i>Journal of the American Chemical Society</i> , 2012 , 134, 758-61	16.4	97
299	Tim18p, a new subunit of the TIM22 complex that mediates insertion of imported proteins into the yeast mitochondrial inner membrane. <i>Molecular and Cellular Biology</i> , 2000 , 20, 1187-93	4.8	95
298	Antioxidant properties of MitoTEMPOL and its hydroxylamine. Free Radical Research, 2009, 43, 4-12	4	94
297	Accumulation of lipophilic dications by mitochondria and cells. <i>Biochemical Journal</i> , 2006 , 400, 199-208	3.8	94
296	Mitochondrial function is required for hydrogen peroxide-induced growth factor receptor transactivation and downstream signaling. <i>Journal of Biological Chemistry</i> , 2004 , 279, 35079-86	5.4	94
295	The mitochondria-targeted anti-oxidant MitoQ reduces aspects of mitochondrial fission in the 6-OHDA cell model of Parkinson@ disease. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2013 , 1832, 174-82	6.9	93
294	Reactivity of ubiquinone and ubiquinol with superoxide and the hydroperoxyl radical: implications for in vivo antioxidant activity. <i>Free Radical Biology and Medicine</i> , 2009 , 46, 105-9	7.8	93
293	cGMP-Elevating Compounds and Ischemic Conditioning Provide Cardioprotection Against Ischemia and Reperfusion Injury via Cardiomyocyte-Specific BK Channels. <i>Circulation</i> , 2017 , 136, 2337-2355	16.7	92
292	Rapid uptake of lipophilic triphenylphosphonium cations by mitochondria in vivo following intravenous injection: implications for mitochondria-specific therapies and probes. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2010 , 1800, 1009-17	4	92
291	A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signaling of HIF-1alpha. <i>FEBS Letters</i> , 2005 , 579, 2669-74	3.8	92
290	Mitochondria-targeted antioxidants in the treatment of disease. <i>Annals of the New York Academy of Sciences</i> , 2008 , 1147, 105-11	6.5	88
289	UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 7981-7986	11.5	86
288	Mitochondria-targeted ubiquinone (MitoQ) decreases ethanol-dependent micro and macro hepatosteatosis. <i>Hepatology</i> , 2011 , 54, 153-63	11.2	86
287	Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat. <i>Free Radical Biology and Medicine</i> , 2015 , 89, 883-94	7.8	85
286	Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. <i>Annals of Neurology</i> , 2013 , 74, 815-25	9.4	85
285	Mitochondria-targeted antioxidants protect pancreatic Ecells against oxidative stress and improve insulin secretion in glucotoxicity and glucolipotoxicity. <i>Cellular Physiology and Biochemistry</i> , 2011 , 28, 873-86	3.9	84
284	Activation of mitogen-activated protein kinases by lysophosphatidylcholine-induced mitochondrial reactive oxygen species generation in endothelial cells. <i>American Journal of Pathology</i> , 2006 , 168, 1737-	- 48 8	84

283	Reactive oxygen species induce virus-independent MAVS oligomerization in systemic lupus erythematosus. <i>Science Signaling</i> , 2016 , 9, ra115	8.8	84
282	Synthesis and characterization of thiobutyltriphenylphosphonium bromide, a novel thiol reagent targeted to the mitochondrial matrix. <i>Archives of Biochemistry and Biophysics</i> , 1995 , 322, 60-8	4.1	82
281	Defects in mitochondrial clearance predispose human monocytes to interleukin-1[hypersecretion. Journal of Biological Chemistry, 2014 , 289, 5000-12	5.4	81
280	In vivo levels of mitochondrial hydrogen peroxide increase with age in mtDNA mutator mice. <i>Aging Cell</i> , 2014 , 13, 765-8	9.9	80
279	Chemical biology of mitochondria. <i>Interface Focus</i> , 2017 , 7, 20170003	3.9	78
278	Characterization of mice with a deletion of protein kinase G type I in cardiomyocytes and the effect on cardioprotection through either postconditioning or mitochondria-targeted S-nitrosothiol. <i>BMC Pharmacology</i> , 2011 , 11,		78
277	Proteomic approaches to the characterization of protein thiol modification. <i>Current Opinion in Chemical Biology</i> , 2011 , 15, 120-8	9.7	78
276	A new hypertrophic mechanism of serotonin in cardiac myocytes: receptor-independent ROS generation. <i>FASEB Journal</i> , 2005 , 19, 641-3	0.9	78
275	Succinate metabolism: a new therapeutic target for myocardial reperfusion injury. <i>Cardiovascular Research</i> , 2016 , 111, 134-41	9.9	77
274	The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signaling. <i>Cell Death and Disease</i> , 2014 , 5, e1368	9.8	76
273	Cell-penetrating peptides do not cross mitochondrial membranes even when conjugated to a lipophilic cation: evidence against direct passage through phospholipid bilayers. <i>Biochemical Journal</i> , 2004 , 383, 457-68	3.8	75
272	Targeting coenzyme Q derivatives to mitochondria. <i>Methods in Enzymology</i> , 2004 , 382, 45-67	1.7	75
271	Alterations to glutathione and nicotinamide nucleotides during the mitochondrial permeability transition induced by peroxynitrite. <i>Biochemical Pharmacology</i> , 1996 , 52, 1047-55	6	75
270	Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2017 , 37, 2322-2332	9.4	73
269	Modulating mitochondrial intracellular location as a redox signal. Science Signaling, 2012, 5, pe39	8.8	73
268	Decreased ATP synthesis is phenotypically expressed during increased energy demand in fibroblasts containing mitochondrial tRNA mutations. <i>FEBS Journal</i> , 1999 , 259, 462-9		73
267	Mitochondrially targeted antioxidants and thiol reagents. <i>Free Radical Biology and Medicine</i> , 2000 , 28, 1547-54	7.8	71
266	Mitochondrial @lashesQa radical concept repHined. <i>Trends in Cell Biology</i> , 2012 , 22, 503-8	18.3	70

265	Characterization of the mitochondrial respiratory pathways in Candida albicans. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2002 , 1556, 73-80	4.6	70
264	Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative phosphorylation. <i>Journal of Biological Chemistry</i> , 2018 , 293, 7315-7328	5.4	69
263	Oncogenic KRAS Induces NIX-Mediated Mitophagy to Promote Pancreatic Cancer. <i>Cancer Discovery</i> , 2019 , 9, 1268-1287	24.4	69
262	Interactions of mitochondrial thiols with nitric oxide. <i>Antioxidants and Redox Signaling</i> , 2003 , 5, 291-305	8.4	69
261	Targeting lipoic acid to mitochondria: synthesis and characterization of a triphenylphosphonium-conjugated alpha-lipoyl derivative. <i>Free Radical Biology and Medicine</i> , 2007 , 42, 1766-80	7.8	67
260	Oxidative modification of hepatic mitochondria protein thiols: effect of chronic alcohol consumption. <i>American Journal of Physiology - Renal Physiology</i> , 2004 , 286, G521-7	5.1	67
259	Coenzyme Q blocks biochemical but not receptor-mediated apoptosis by increasing mitochondrial antioxidant protection. <i>FEBS Letters</i> , 2001 , 503, 46-50	3.8	67
258	Mitochondrial ROS-derived PTEN oxidation activates PI3K pathway for mTOR-induced myogenic autophagy. <i>Cell Death and Differentiation</i> , 2018 , 25, 1921-1937	12.7	65
257	Mitochondria-targeted redox probes as tools in the study of oxidative damage and ageing. <i>Mechanisms of Ageing and Development</i> , 2005 , 126, 982-6	5.6	65
256	Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. <i>Cell Death and Differentiation</i> , 2018 , 25, 542-572	12.7	64
255	Mitochondrial ROS fire up T cell activation. <i>Immunity</i> , 2013 , 38, 201-2	32.3	63
254	Disulphide formation on mitochondrial protein thiols. <i>Biochemical Society Transactions</i> , 2005 , 33, 1390-3	35.1	63
253	Malonylation of GAPDH is an inflammatory signal in macrophages. <i>Nature Communications</i> , 2019 , 10, 338	17.4	62
252	Mitochondria-targeted antioxidant therapy with MitoQ ameliorates aortic stiffening in old mice. Journal of Applied Physiology, 2018 , 124, 1194-1202	3.7	62
251	Assessing the Mitochondrial Membrane Potential in Cells and InIVivo using Targeted Click Chemistry and Mass Spectrometry. <i>Cell Metabolism</i> , 2016 , 23, 379-85	24.6	62
250	MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload. <i>Free Radical Biology and Medicine</i> , 2018 , 117, 18-29	7.8	61
249	The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model. <i>Journal of Heart and Lung Transplantation</i> , 2015 , 34, 1471-80	5.8	60
248	Mitochondrial GSH determines the toxic or therapeutic potential of superoxide scavenging in steatohepatitis. <i>Journal of Hepatology</i> , 2012 , 57, 852-9	13.4	60

247	Moving Forwards by Blocking Back-Flow: The Yin and Yang of MI Therapy. <i>Circulation Research</i> , 2016 , 118, 898-906	15.7	60
246	Glycolysis and the pentose phosphate pathway after human traumatic brain injury: microdialysis studies using 1,2-(13)C2 glucose. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2015 , 35, 111-20	7.3	59
245	The mitochondria-targeted antioxidant MitoQ modulates oxidative stress, inflammation and leukocyte-endothelium interactions in leukocytes isolated from type 2 diabetic patients. <i>Redox Biology</i> , 2016 , 10, 200-205	11.3	59
244	Slow calcium waves and redox changes precede mitochondrial permeability transition pore opening in the intact heart during hypoxia and reoxygenation. <i>Cardiovascular Research</i> , 2012 , 93, 445-53	9.9	59
243	Treating the placenta to prevent adverse effects of gestational hypoxia on fetal brain development. <i>Scientific Reports</i> , 2017 , 7, 9079	4.9	57
242	Development of lipophilic cations as therapies for disorders due to mitochondrial dysfunction. <i>Expert Opinion on Biological Therapy</i> , 2001 , 1, 753-64	5.4	57
241	Variable stoichiometry of proton pumping by the mitochondrial respiratory chain. <i>Nature</i> , 1987 , 329, 170-2	50.4	57
240	Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2015 , 308, H651-63	5.2	56
239	Enhanced mitochondrial radical production in patients which rheumatoid arthritis correlates with elevated levels of tumor necrosis factor alpha in plasma. <i>Free Radical Research</i> , 1996 , 25, 161-9	4	56
238	MitoQ protects dopaminergic neurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1\(\Pi\)Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018 , 1864, 2859-2870	6.9	56
237	Non-enzymatic N-acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S-acetylated Thiol Intermediate Sensitive to Glyoxalase II. <i>Cell Reports</i> , 2017 , 18, 2105-2112	10.6	55
236	mtDNA Mutagenesis Disrupts Pluripotent Stem Cell Function by Altering Redox Signaling. <i>Cell Reports</i> , 2015 , 11, 1614-24	10.6	55
235	The control of electron flux through cytochrome oxidase. <i>Biochemical Journal</i> , 1987 , 243, 499-505	3.8	55
234	Targeting large molecules to mitochondria. <i>Advanced Drug Delivery Reviews</i> , 2001 , 49, 189-98	18.5	54
233	Protein CoAlation: a redox-regulated protein modification by coenzyme A in mammalian cells. <i>Biochemical Journal</i> , 2017 , 474, 2489-2508	3.8	53
232	The mitochondria-targeted antioxidant mitoquinone protects against cold storage injury of renal tubular cells and rat kidneys. <i>Journal of Pharmacology and Experimental Therapeutics</i> , 2011 , 336, 682-92	4.7	53
231	Resolution of mitochondrial oxidative stress rescues coronary collateral growth in Zucker obese fatty rats. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2012 , 32, 325-34	9.4	53
230	The mitochondria targeted antioxidant MitoQ protects against fluoroquinolone-induced oxidative stress and mitochondrial membrane damage in human Achilles tendon cells. <i>Free Radical Research</i> , 2009 , 43, 323-8	4	53

229	Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation. <i>Nature Metabolism</i> , 2019 , 1, 966-974	14.6	53	
228	Targeting dinitrophenol to mitochondria: limitations to the development of a self-limiting mitochondrial protonophore. <i>Bioscience Reports</i> , 2006 , 26, 231-43	4.1	52	
227	HIGD1A Regulates Oxygen Consumption, ROS Production, and AMPK Activity during Glucose Deprivation to Modulate Cell Survival and Tumor Growth. <i>Cell Reports</i> , 2015 , 10, 891-899	10.6	51	
226	Mitochondrial reactive oxygen species enhance AMP-activated protein kinase activation in the endothelium of patients with coronary artery disease and diabetes. <i>Clinical Science</i> , 2013 , 124, 403-11	6.5	51	
225	A ratiometric fluorescent probe for assessing mitochondrial phospholipid peroxidation within living cells. <i>Free Radical Biology and Medicine</i> , 2012 , 53, 544-53	7.8	50	
224	Mitochondrial production of oxidants is necessary for physiological calcium oscillations. <i>Journal of Cellular Physiology</i> , 2006 , 206, 487-94	7	50	
223	Delivery of antisense peptide nucleic acids (PNAs) to the cytosol by disulphide conjugation to a lipophilic cation. <i>FEBS Letters</i> , 2004 , 556, 180-6	3.8	50	
222	New tricks from an old dog: mitochondrial redox signaling in cellular inflammation. <i>Seminars in Immunology</i> , 2012 , 24, 384-92	10.7	49	
221	Induction of the mitochondrial permeability transition by peroxynitrite. <i>Biochemical Society Transactions</i> , 1997 , 25, 909-14	5.1	49	
220	The stoichiometry of charge translocation by cytochrome oxidase and the cytochrome bc1 complex of mitochondria at high membrane potential. <i>FEBS Journal</i> , 1988 , 173, 645-51		49	
219	Restoring mitochondrial DNA copy number preserves mitochondrial function and delays vascular aging in mice. <i>Aging Cell</i> , 2018 , 17, e12773	9.9	48	
218	Using exomarkers to assess mitochondrial reactive species in vivo. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2014 , 1840, 923-30	4	48	
217	How understanding the control of energy metabolism can help investigation of mitochondrial dysfunction, regulation and pharmacology. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2001 , 1504, 1-11	4.6	48	
216	Uptake and accumulation of 1-methyl-4-phenylpyridinium by rat liver mitochondria measured using an ion-selective electrode. <i>Biochemical Journal</i> , 1992 , 288 (Pt 2), 439-43	3.8	48	
215	Protection through postconditioning or a mitochondria-targeted S-nitrosothiol is unaffected by cardiomyocyte-selective ablation of protein kinase G. <i>Basic Research in Cardiology</i> , 2013 , 108, 337	11.8	47	
214	Nrf2 controls iron homeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin. <i>Nature Metabolism</i> , 2019 , 1, 519-531	14.6	46	
213	The mitochondrial-targeted antioxidant MitoQ ameliorates metabolic syndrome features in obesogenic diet-fed rats better than Apocynin or Allopurinol. <i>Free Radical Research</i> , 2014 , 48, 1232-46	4	46	
212	Metabolomic Profiling in Acute ST-Segment-Elevation Myocardial Infarction Identifies Succinate as an Early Marker of Human Ischemia-Reperfusion Injury. <i>Journal of the American Heart Association</i> , 2018 , 7.	6	45	

211	A mitochondria-targeted derivative of ascorbate: MitoC. <i>Free Radical Biology and Medicine</i> , 2015 , 89, 668-78	7.8	45
210	A mitochondria-targeted macrocyclic Mn(II) superoxide dismutase mimetic. <i>Chemistry and Biology</i> , 2012 , 19, 1237-46		45
209	How mitochondrial damage affects cell function. <i>Journal of Biomedical Science</i> , 2002 , 9, 475-87	13.3	45
208	Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. <i>Science</i> , 2021 , 371, 839-846	33.3	45
207	(13)C-labelled microdialysis studies of cerebral metabolism in TBI patients. <i>European Journal of Pharmaceutical Sciences</i> , 2014 , 57, 87-97	5.1	44
206	Mitochondrial Superoxide Contributes to Hippocampal Synaptic Dysfunction and Memory Deficits in Angelman Syndrome Model Mice. <i>Journal of Neuroscience</i> , 2015 , 35, 16213-20	6.6	44
205	Exposure to the parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP+) and nitric oxide simultaneously causes cyclosporin A-sensitive mitochondrial calcium efflux and depolarisation. <i>Biochemical Pharmacology</i> , 1996 , 51, 267-73	6	44
204	Mitochondria-derived reactive oxygen species mediate caspase-dependent and -independent neuronal deaths. <i>Molecular and Cellular Neurosciences</i> , 2014 , 63, 13-23	4.8	43
203	Membrane-potential-dependent changes in the stoichiometry of charge translocation by the mitochondrial electron transport chain. <i>FEBS Journal</i> , 1988 , 173, 637-44		43
202	Protection against cardiac ischemia-reperfusion injury by hypothermia and by inhibition of succinate accumulation and oxidation is additive. <i>Basic Research in Cardiology</i> , 2019 , 114, 18	11.8	42
201	The mitochondrial dicarboxylate and 2-oxoglutarate carriers do not transport glutathione. <i>FEBS Letters</i> , 2015 , 589, 621-8	3.8	42
200	Combined therapeutic benefit of mitochondria-targeted antioxidant, MitoQ10, and angiotensin receptor blocker, losartan, on cardiovascular function. <i>Journal of Hypertension</i> , 2014 , 32, 555-64	1.9	42
199	Construction and testing of engineered zinc-finger proteins for sequence-specific modification of mtDNA. <i>Nature Protocols</i> , 2010 , 5, 342-56	18.8	42
198	Long-distance apoptotic killing of cells is mediated by hydrogen peroxide in a mitochondrial ROS-dependent fashion. <i>Cell Death and Differentiation</i> , 2005 , 12, 1442-4	12.7	42
197	Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology <i>Nature Reviews Molecular Cell Biology</i> , 2022 ,	48.7	42
196	Protein carbonyl formation and tyrosine nitration as markers of oxidative damage during ischaemia-reperfusion injury to rat sciatic nerve. <i>Neuroscience</i> , 1999 , 94, 909-16	3.9	41
195	Mitochondrial mechanisms and therapeutics in ischaemia reperfusion injury. <i>Pediatric Nephrology</i> , 2019 , 34, 1167-1174	3.2	40
194	Using mitochondria-targeted molecules to study mitochondrial radical production and its consequences. <i>Biochemical Society Transactions</i> , 2003 , 31, 1295-9	5.1	40

193	Fasting, but Not Aging, Dramatically Alters the Redox Status of Cysteine Residues on Proteins in Drosophila melanogaster. <i>Cell Reports</i> , 2015 , 11, 1856-65	10.6	39
192	A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes. <i>Free Radical Biology and Medicine</i> , 2014 , 67, 437-50	7.8	39
191	MitoNeoD: A Mitochondria-Targeted Superoxide Probe. <i>Cell Chemical Biology</i> , 2017 , 24, 1285-1298.e12	8.2	39
190	Evidence of severe mitochondrial oxidative stress and a protective effect of low oxygen in mouse models of inherited photoreceptor degeneration. <i>Human Molecular Genetics</i> , 2011 , 20, 322-35	5.6	39
189	Labeling of mitochondrial proteins in living cells by the thiol probe thiobutyltriphenylphosphonium bromide. <i>Archives of Biochemistry and Biophysics</i> , 1997 , 339, 33-9	4.1	39
188	Mitochondrial accumulation of a lipophilic cation conjugated to an ionisable group depends on membrane potential, pH gradient and pK(a): implications for the design of mitochondrial probes and therapies. <i>Journal of Bioenergetics and Biomembranes</i> , 2013 , 45, 165-73	3.7	38
187	The concomitant expression and availability of conventional and alternative, cyanide-insensitive, respiratory pathways in Candida albicans. <i>Mitochondrion</i> , 2005 , 5, 200-11	4.9	38
186	The mitochondria-targeted antioxidant MitoQ attenuates liver fibrosis in mice. <i>International Journal of Physiology, Pathophysiology and Pharmacology</i> , 2016 , 8, 14-27	3.4	38
185	The Activity of Menkes Disease Protein ATP7A Is Essential for Redox Balance in Mitochondria. Journal of Biological Chemistry, 2016 , 291, 16644-58	5.4	37
184	Reaction between peroxynitrite and triphenylphosphonium-substituted arylboronic acid isomers: identification of diagnostic marker products and biological implications. <i>Chemical Research in Toxicology</i> , 2013 , 26, 856-67	4	37
183	Mitochondrial redox state regulates transcription of the nuclear-encoded mitochondrial protein manganese superoxide dismutase: a proposed adaptive response to mitochondrial redox imbalance. <i>Free Radical Biology and Medicine</i> , 2005 , 38, 644-54	7.8	37
182	Placental Adaptation to Early-Onset Hypoxic Pregnancy and Mitochondria-Targeted Antioxidant Therapy in a Rodent Model. <i>American Journal of Pathology</i> , 2018 , 188, 2704-2716	5.8	37
181	Focally perfused succinate potentiates brain metabolism in head injury patients. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2017 , 37, 2626-2638	7.3	36
180	Mitochondrial impairments contribute to Spinocerebellar ataxia type 1 progression and can be ameliorated by the mitochondria-targeted antioxidant MitoQ. <i>Free Radical Biology and Medicine</i> , 2016 , 97, 427-440	7.8	36
179	Studies on the rapid stimulation of mitochondrial respiration by thyroid hormones. <i>European Journal of Endocrinology</i> , 1992 , 127, 542-6	6.5	35
178	In vivo evidence of mitochondrial dysfunction and altered redox homeostasis in a genetic mouse model of propionic acidemia: Implications for the pathophysiology of this disorder. <i>Free Radical Biology and Medicine</i> , 2016 , 96, 1-12	7.8	35
177	Age-related endothelial dysfunction in human skeletal muscle feed arteries: the role of free radicals derived from mitochondria in the vasculature. <i>Acta Physiologica</i> , 2018 , 222, e12893	5.6	34
176	Metabolic adaptations during extreme anoxia in the turtle heart and their implications for ischemia-reperfusion injury. <i>Scientific Reports</i> , 2019 , 9, 2850	4.9	34

175	Monoamine oxidase-dependent endoplasmic reticulum-mitochondria dysfunction and mast cell degranulation lead to adverse cardiac remodeling in diabetes. <i>Cell Death and Differentiation</i> , 2018 , 25, 1671-1685	12.7	33
174	Inactivation of pyruvate dehydrogenase kinase 2 by mitochondrial reactive oxygen species. <i>Journal of Biological Chemistry</i> , 2012 , 287, 35153-35160	5.4	33
173	Attenuation of oxidative damage by targeting mitochondrial complex I in neonatal hypoxic-ischemic brain injury. <i>Free Radical Biology and Medicine</i> , 2018 , 124, 517-524	7.8	33
172	Can antioxidants be effective therapeutics?. Current Opinion in Investigational Drugs, 2010, 11, 426-31		33
171	Toward a control theory analysis of aging. Annual Review of Biochemistry, 2008, 77, 777-98	29.1	32
170	The essential function of the small Tim proteins in the TIM22 import pathway does not depend on formation of the soluble 70-kilodalton complex. <i>Molecular and Cellular Biology</i> , 2001 , 21, 6132-8	4.8	32
169	Inhibition of complex I by hydrophobic analogues of N-methyl-4-phenylpyridinium (MPP+) and the use of an ion-selective electrode to measure their accumulation by mitochondria and electron-transport particles. <i>Biochemical Journal</i> , 1995 , 306 (Pt 2), 359-65	3.8	32
168	Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning. <i>Redox Biology</i> , 2018 , 16, 344-351	11.3	31
167	Mitochondria selective S-nitrosation by mitochondria-targeted S-nitrosothiol protects against post-infarct heart failure in mouse hearts. <i>European Journal of Heart Failure</i> , 2014 , 16, 712-7	12.3	31
166	The mitochondrial-targeted antioxidant, MitoQ, increases liver mitochondrial cardiolipin content in obesogenic diet-fed rats. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2015 , 1847, 1025-35	4.6	31
165	Re-directing an alkylating agent to mitochondria alters drug target and cell death mechanism. <i>PLoS ONE</i> , 2013 , 8, e60253	3.7	31
164	Impact of the mitochondria-targeted antioxidant MitoQ on hypoxia-induced pulmonary hypertension. <i>European Respiratory Journal</i> , 2018 ,	13.6	30
163	Ischemic preconditioning protects against cardiac ischemia reperfusion injury without affecting succinate accumulation or oxidation. <i>Journal of Molecular and Cellular Cardiology</i> , 2018 , 123, 88-91	5.8	30
162	Interaction of butylated hydroxyanisole with mitochondrial oxidative phosphorylation. <i>Biochemical Pharmacology</i> , 1992 , 43, 1203-8	6	30
161	Therapeutic potential of the mitochondria-targeted antioxidant MitoQ in mitochondrial-ROS induced sensorineural hearing loss caused by Idh2 deficiency. <i>Redox Biology</i> , 2019 , 20, 544-555	11.3	30
160	Cyclosporin A blocks 6-hydroxydopamine-induced efflux of Ca2+ from mitochondria without inactivating the mitochondrial inner-membrane pore. <i>Biochemical Journal</i> , 1994 , 297 (Pt 1), 151-5	3.8	29
159	Mitochondria-targeted antioxidant mitoquinone deactivates human and rat hepatic stellate cells and reduces portal hypertension in cirrhotic rats. <i>Liver International</i> , 2017 , 37, 1002-1012	7.9	28
158	Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis. <i>Free Radical Biology and Medicine</i> , 2019 , 134, 678-687	7.8	28

(2009-2017)

157	Identification and quantification of protein -nitrosation by nitrite in the mouse heart during ischemia. <i>Journal of Biological Chemistry</i> , 2017 , 292, 14486-14495	5.4	28
156	Targeted mitochondrial therapy using MitoQ shows equivalent renoprotection to angiotensin converting enzyme inhibition but no combined synergy in diabetes. <i>Scientific Reports</i> , 2017 , 7, 15190	4.9	28
155	A mitochondrial-targeted ubiquinone modulates muscle lipid profile and improves mitochondrial respiration in obesogenic diet-fed rats. <i>British Journal of Nutrition</i> , 2016 , 115, 1155-66	3.6	28
154	Assessment of HS using the newly developed mitochondria-targeted mass spectrometry probe MitoA. <i>Journal of Biological Chemistry</i> , 2017 , 292, 7761-7773	5.4	27
153	The swan-neck lesion: proximal tubular adaptation to oxidative stress in nephropathic cystinosis. American Journal of Physiology - Renal Physiology, 2015 , 308, F1155-66	4.3	27
152	Synthesis of triphenylphosphonium vitamin E derivatives as mitochondria-targeted antioxidants. <i>Tetrahedron</i> , 2015 , 71, 8444-8453	2.4	27
151	Macrophage metabolic reprogramming presents a therapeutic target in lupus nephritis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15160-15171	11.5	27
150	Mitochondria-targeted paraquat and metformin mediate ROS production to induce multiple pathways of retrograde signaling: A dose-dependent phenomenon. <i>Redox Biology</i> , 2020 , 36, 101606	11.3	27
149	Suppression of reactive oxygen species generation in heart mitochondria from anoxic turtles: the role of complex I -nitrosation. <i>Journal of Experimental Biology</i> , 2018 , 221,	3	27
148	Selective Mitochondrial Targeting Exerts Anxiolytic Effects In Vivo. <i>Neuropsychopharmacology</i> , 2016 , 41, 1751-8	8.7	27
147	Effect of the mitochondrial antioxidant, Mito Vitamin E, on hypoxic-ischemic striatal injury in neonatal rats: a dose-response and stereological study. <i>Experimental Neurology</i> , 2006 , 199, 513-9	5.7	27
146	An antigenomic strategy for treating heteroplasmic mtDNA disorders. <i>Advanced Drug Delivery Reviews</i> , 2001 , 49, 121-5	18.5	27
145	Targeting mitochondrial oxidative stress with MitoQ reduces NET formation and kidney disease in lupus-prone MRL- mice. <i>Lupus Science and Medicine</i> , 2020 , 7,	4.6	27
144	Myocardial NADPH oxidase-4 regulates the physiological response to acute exercise. <i>ELife</i> , 2018 , 7,	8.9	27
143	Premature synaptic mitochondrial dysfunction in the hippocampus during aging contributes to memory loss. <i>Redox Biology</i> , 2020 , 34, 101558	11.3	26
142	Design and Synthesis of a Mitochondria-Targeted Mimic of Glutathione Peroxidase, MitoEbselen-2, as a Radiation Mitigator. <i>ACS Medicinal Chemistry Letters</i> , 2014 , 5, 1304-1307	4.3	26
141	Quantification and identification of mitochondrial proteins containing vicinal dithiols. <i>Archives of Biochemistry and Biophysics</i> , 2010 , 504, 228-35	4.1	26
140	Synthesis of a mitochondria-targeted spin trap using a novel Parham-type cyclization. <i>Tetrahedron</i> , 2009 , 65, 8154-8160	2.4	26

139	The interplay between redox signalling and proteostasis in neurodegeneration: In vivo effects of a mitochondria-targeted antioxidant in Huntington@disease mice. <i>Free Radical Biology and Medicine</i> , 2020 , 146, 372-382	7.8	26
138	Treatment with antioxidants ameliorates oxidative damage in a mouse model of propionic acidemia. <i>Molecular Genetics and Metabolism</i> , 2017 , 122, 43-50	3.7	25
137	Complex I deficiency due to selective loss of Ndufs4 in the mouse heart results in severe hypertrophic cardiomyopathy. <i>PLoS ONE</i> , 2014 , 9, e94157	3.7	25
136	Induction of mitochondrial ROS production by electrophilic lipids: a new pathway of redox signaling?. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2006 , 290, H1754-5	5.2	25
135	Structural basis for a complex I mutation that blocks pathological ROS production. <i>Nature Communications</i> , 2021 , 12, 707	17.4	25
134	Selective Disruption of Mitochondrial Thiol Redox State in Cells and In[Vivo. <i>Cell Chemical Biology</i> , 2019 , 26, 449-461.e8	8.2	24
133	The effect of succinate on brain NADH/NAD redox state and high energy phosphate metabolism in acute traumatic brain injury. <i>Scientific Reports</i> , 2018 , 8, 11140	4.9	24
132	Measuring mitochondrial protein thiol redox state. <i>Methods in Enzymology</i> , 2010 , 474, 123-47	1.7	24
131	Hydrogen peroxide produced inside mitochondria takes part in cell-to-cell transmission of apoptotic signal. <i>Biochemistry (Moscow)</i> , 2006 , 71, 60-7	2.9	24
130	Superoxide production by mitochondria in the presence of nitric oxide forms peroxynitrite. <i>IUBMB Life</i> , 1996 , 40, 527-34	4.7	24
129	Mitochondrial superoxide generation induces a parkinsonian phenotype in zebrafish and huntingtin aggregation in human cells. <i>Free Radical Biology and Medicine</i> , 2019 , 130, 318-327	7.8	24
128	Rational discovery and development of a mitochondria-targeted antioxidant based on cinnamic acid scaffold. <i>Free Radical Research</i> , 2012 , 46, 600-11	4	23
127	Do organellar genomes function as long-term redox damage sensors?. Trends in Genetics, 2009, 25, 253-	- 6 315	23
126	The Mitochondria-Targeted Antioxidant MitoQ Modulates Mitochondrial Function and Endoplasmic Reticulum Stress in Pancreatic ©ells Exposed to Hyperglycaemia. <i>Cellular Physiology and Biochemistry</i> , 2019 , 52, 186-197	3.9	23
125	Incorporation of triphenylphosphonium functionality improves the inhibitory properties of phenothiazine derivatives in Mycobacterium tuberculosis. <i>Bioorganic and Medicinal Chemistry</i> , 2014 , 22, 5320-8	3.4	22
124	Effects of the mitochondria-targeted antioxidant mitoquinone in murine acute pancreatitis. <i>Mediators of Inflammation</i> , 2015 , 2015, 901780	4.3	22
123	Chapter 19 Measuring redox changes to mitochondrial protein thiols with redox difference gel electrophoresis (redox-DIGE). <i>Methods in Enzymology</i> , 2009 , 456, 343-61	1.7	22
122	Neonatal rat hypoxia-ischemia: Effect of the anti-oxidant mitoquinol, and S-PBN. <i>Pediatrics International</i> , 2008 , 50, 481-8	1.2	21

(2015-2015)

121	MitoQ modulates oxidative stress and decreases inflammation following hemorrhage. <i>Journal of Trauma and Acute Care Surgery</i> , 2015 , 78, 573-9	3.3	19
120	Disabling Mitochondrial Peroxide Metabolism via Combinatorial Targeting of Peroxiredoxin 3 as an Effective Therapeutic Approach for Malignant Mesothelioma. <i>PLoS ONE</i> , 2015 , 10, e0127310	3.7	19
119	The permissive role of mitochondria in the induction of haem oxygenase-1 in endothelial cells. <i>Biochemical Journal</i> , 2009 , 419, 427-36	3.8	19
118	Chapter 22 The uptake and interactions of the redox cycler paraquat with mitochondria. <i>Methods in Enzymology</i> , 2009 , 456, 395-417	1.7	19
117	Specific targeting of a DNA-alkylating reagent to mitochondria. Synthesis and characterization of [4-((11aS)-7-methoxy-1,2,3,11a-tetrahydro-5H-pyrrolo[2,1-c][1,4]benzodiazepin-5-on-8-oxy)butyl]-triphiodide. <i>FEBS Journal</i> , 2003 , 270, 2827-36	ienylph	o sp honiu
116	The synthesis and antibacterial activity of totarol derivatives. Part 3: Modification of ring-B. <i>Bioorganic and Medicinal Chemistry</i> , 2000 , 8, 1663-75	3.4	19
115	Redox Modulation by Reversal of the Mitochondrial Nicotinamide Nucleotide Transhydrogenase. <i>Cell Metabolism</i> , 2015 , 22, 363-5	24.6	18
114	A Comparison of Oxidative Lactate Metabolism in Traumatically Injured Brain and Control Brain. Journal of Neurotrauma, 2018 , 35, 2025-2035	5.4	18
113	Mitochondrial protein S-nitrosation protects against ischemia reperfusion-induced denervation at neuromuscular junction in skeletal muscle. <i>Free Radical Biology and Medicine</i> , 2018 , 117, 180-190	7.8	18
112	P-glycoprotein (Mdr1a/1b) and breast cancer resistance protein (Bcrp) decrease the uptake of hydrophobic alkyl triphenylphosphonium cations by the brain. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2013 , 1830, 3458-65	4	18
111	Click-PEGylation - A mobility shift approach to assess the redox state of cysteines in candidate proteins. <i>Free Radical Biology and Medicine</i> , 2017 , 108, 374-382	7.8	18
110	Mechanism of succinate efflux upon reperfusion of the ischaemic heart. <i>Cardiovascular Research</i> , 2021 , 117, 1188-1201	9.9	18
109	Rapamycin-mediated mouse lifespan extension: Late-life dosage regimes with sex-specific effects. <i>Aging Cell</i> , 2020 , 19, e13269	9.9	17
108	Mitochondria-targeted antioxidant MitoQ reduced renal damage caused by ischemia-reperfusion injury in rodent kidneys: Longitudinal observations of T -weighted imaging and dynamic contrast-enhanced MRI. <i>Magnetic Resonance in Medicine</i> , 2018 , 79, 1559-1567	4.4	17
107	The Causes and Consequences of Nonenzymatic Protein Acylation. <i>Trends in Biochemical Sciences</i> , 2018 , 43, 921-932	10.3	16
106	Mitochondrial redox signalling at a glance. <i>Journal of Cell Science</i> , 2012 , 125, 1837-1837	5.3	16
105	Effects of chronic ethanol feeding on rat liver mitochondrial energy metabolism. <i>Biochemical Pharmacology</i> , 1992 , 43, 2663-7	6	16
104	Targeting mitochondria with small molecules: the preparation of MitoB and MitoP as exomarkers of mitochondrial hydrogen peroxide. <i>Methods in Molecular Biology</i> , 2015 , 1265, 25-50	1.4	16

Targeting mitochondrial fitness as a strategy for healthy vascular aging. Clinical Science, **2020**, 134, 149161519 16

102	Translatable mitochondria-targeted protection against programmed cardiovascular dysfunction. <i>Science Advances</i> , 2020 , 6, eabb1929	14.3	16
101	Metabolic control of ferroptosis in cancer. <i>Nature Cell Biology</i> , 2018 , 20, 1104-1105	23.4	16
100	Investigating mitochondrial radical production using targeted probes. <i>Biochemical Society Transactions</i> , 2004 , 32, 1011-4	5.1	15
99	Thermodynamic limits to the stoichiometry of H+ pumping by mitochondrial cytochrome oxidase. <i>FEBS Letters</i> , 1985 , 187, 16-20	3.8	15
98	Convergent evolution of conserved mitochondrial pathways underlies repeated adaptation to extreme environments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 16424-16430	11.5	14
97	Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels. <i>Redox Biology</i> , 2016 , 8, 136-48	11.3	14
96	A transient increase in lipid peroxidation primes preadipocytes for delayed mitochondrial inner membrane permeabilization and ATP depletion during prolonged exposure to fatty acids. <i>Free Radical Biology and Medicine</i> , 2014 , 67, 330-41	7.8	14
95	Mitochondria-targeted therapeutics, MitoQ and BGP-15, reverse aging-associated meiotic spindle defects in mouse and human oocytes. <i>Human Reproduction</i> , 2021 , 36, 771-784	5.7	14
94	The damage-associated molecular pattern HMGB1 is released early after clinical hepatic ischemia/reperfusion. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2019 , 1865, 1192-1200	6.9	13
93	Facultative protein selenation regulates redox sensitivity, adipose tissue thermogenesis, and obesity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 107	89 ⁻ 157	963
92	Proximal Cysteines that Enhance Lysine N-Acetylation of Cytosolic Proteins in Mice Are Less Conserved in Longer-Living Species. <i>Cell Reports</i> , 2018 , 24, 1445-1455	10.6	13
91	An investigation of the effects of MitoQ on human peripheral mononuclear cells. <i>Free Radical Research</i> , 2011 , 45, 351-8	4	13
90	Targeting succinate dehydrogenase with malonate ester prodrugs decreases renal ischemia reperfusion injury. <i>Redox Biology</i> , 2020 , 36, 101640	11.3	13
89	Assessing the Delivery of Molecules to the Mitochondrial Matrix Using Click Chemistry. <i>ChemBioChem</i> , 2016 , 17, 1312-6	3.8	13
88	Mitochondria-derived Reactive Oxygen Species Mediate Blue Light-induced Death of Retinal Pigment Epithelial Cells¶. <i>Photochemistry and Photobiology</i> , 2007 , 79, 470-475	3.6	12
87	Ubiquinol and plastoquinol triphenylphosphonium conjugates can carry electrons through phospholipid membranes. <i>Bioelectrochemistry</i> , 2016 , 111, 23-30	5.6	12
86	The Mitochondria-Targeted Methylglyoxal Sequestering Compound, MitoGamide, Is Cardioprotective in the Diabetic Heart. <i>Cardiovascular Drugs and Therapy</i> , 2019 , 33, 669-674	3.9	11

85	Expanding the palette of phenanthridinium cations. Chemistry - A European Journal, 2014, 20, 3742-51	4.8	11
84	Fine-tuning autophagy maximises lifespan and is associated with changes in mitochondrial gene expression in Drosophila. <i>PLoS Genetics</i> , 2020 , 16, e1009083	6	11
83	A sensitive mass spectrometric assay for mitochondrial CoQ pool redox state in vivo. <i>Free Radical Biology and Medicine</i> , 2020 , 147, 37-47	7.8	11
82	Early detection of doxorubicin-induced cardiotoxicity in rats by its cardiac metabolic signature assessed with hyperpolarized MRI. <i>Communications Biology</i> , 2020 , 3, 692	6.7	11
81	Mitochondria as Therapeutic Targets in Transplantation. <i>Trends in Molecular Medicine</i> , 2021 , 27, 185-19	811.5	11
80	Altered cellular redox homeostasis and redox responses under standard oxygen cell culture conditions versus physioxia. <i>Free Radical Biology and Medicine</i> , 2018 , 126, 322-333	7.8	10
79	Cell-penetrating peptides are excluded from the mitochondrial matrix. <i>Biochemical Society Transactions</i> , 2004 , 32, 1072-4	5.1	10
78	Mitochondrial import of the long and short isoforms of human uncoupling protein 3. <i>FEBS Letters</i> , 2000 , 465, 135-40	3.8	10
77	A novel class of mitochondria-targeted soft electrophiles modifies mitochondrial proteins and inhibits mitochondrial metabolism in breast cancer cells through redox mechanisms. <i>PLoS ONE</i> , 2015 , 10, e0120460	3.7	10
76	Ester Prodrugs of Malonate with Enhanced Intracellular Delivery Protect Against Cardiac Ischemia-Reperfusion Injury In Vivo. <i>Cardiovascular Drugs and Therapy</i> , 2020 , 1	3.9	10
75	Active RNA interference in mitochondria. <i>Cell Research</i> , 2021 , 31, 219-228	24.7	10
74	Using chemical biology to assess and modulate mitochondria: progress and challenges. <i>Interface Focus</i> , 2017 , 7, 20160151	3.9	9
73	Stable mitochondrial CICIII supercomplex interactions in reptiles versus homeothermic vertebrates. Journal of Experimental Biology, 2020 , 223,	3	9
72	The peroxisomal fatty acid transporter ABCD1/PMP-4 is required in the C. elegans hypodermis for axonal maintenance: A worm model for adrenoleukodystrophy. <i>Free Radical Biology and Medicine</i> , 2020 , 152, 797-809	7.8	9
71	Pro-fluorescent mitochondria-targeted real-time responsive redox probes synthesised from carboxy isoindoline nitroxides: Sensitive probes of mitochondrial redox status in cells. <i>Free Radical Biology and Medicine</i> , 2018 , 128, 97-110	7.8	9
70	APOPT1/COA8 assists COX assembly and is oppositely regulated by UPS and ROS. <i>EMBO Molecular Medicine</i> , 2019 , 11,	12	9
69	Nrf2 is activated by disruption of mitochondrial thiol homeostasis but not by enhanced mitochondrial superoxide production. <i>Journal of Biological Chemistry</i> , 2021 , 296, 100169	5.4	9
68	Glycolysis promotes caspase-3 activation in lipid rafts in T cells. <i>Cell Death and Disease</i> , 2018 , 9, 62	9.8	8

67	Respiratory chain signalling is essential for adaptive remodelling following cardiac ischaemia. Journal of Cellular and Molecular Medicine, 2020 , 24, 3534-3548	5.6	8
66	Immunological Synapse Formation Induces Mitochondrial Clustering and Mitophagy in Dendritic Cells. <i>Journal of Immunology</i> , 2019 , 202, 1715-1723	5.3	7
65	How should we talk about metabolism?. <i>Nature Immunology</i> , 2020 , 21, 713-715	19.1	7
64	Substrate dependence of the relationship between membrane potential and respiration rate in mitochondria. <i>Biochemical Society Transactions</i> , 1986 , 14, 1042-1043	5.1	7
63	Rerouting metabolism to activate macrophages. <i>Nature Immunology</i> , 2019 , 20, 1097-1099	19.1	6
62	Radiosynthesis of 11-[(18) F]fluoroundecyltriphenylphosphonium (MitoF) as a potential mitochondria-specific positron emission tomography radiotracer. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> , 2013 , 56, 717-21	1.9	6
61	Does interplay between nitric oxide and mitochondria affect hypoxia-inducible transcription factor-1 activity?. <i>Biochemical Journal</i> , 2003 , 376, e5-6	3.8	6
60	SYNTHESIS, CHARACTERIZATION, AND BIOLOGICAL PROPERTIES OF A FULLERENE TRIPHENYLPHOSPHONIUM SALT. <i>Fullerenes, Nanotubes, and Carbon Nanostructures</i> , 2001 , 9, 339-350		6
59	Cysteine 253 of UCP1 regulates energy expenditure and sex-dependent adipose tissue inflammation. <i>Cell Metabolism</i> , 2021 ,	24.6	6
58	Generation of mitochondrial reactive oxygen species is controlled by ATPase inhibitory factor 1 and regulates cognition. <i>PLoS Biology</i> , 2021 , 19, e3001252	9.7	6
57	Mitochondrial ROS prime the hyperglycemic shift from apoptosis to necroptosis. <i>Cell Death Discovery</i> , 2020 , 6, 132	6.9	5
56	Complementation of coenzyme Q-deficient yeast by coenzyme Q analogues requires the isoprenoid side chain. <i>FEBS Journal</i> , 2010 , 277, 2067-82	5.7	5
55	The control of electron flux through cytochrome oxidase. <i>Biochemical Society Transactions</i> , 1986 , 14, 887-888	5.1	5
54	Confirmation of the Cardioprotective Effect of MitoGamide in the Diabetic Heart. <i>Cardiovascular Drugs and Therapy</i> , 2020 , 34, 823-834	3.9	5
53	Species- and tissue-specific differences in ROS metabolism during exposure to hypoxia and hyperoxia plus recovery in marine sculpins. <i>Journal of Experimental Biology</i> , 2019 , 222,	3	5
52	Phosphorus spectroscopy in acute TBI demonstrates metabolic changes that relate to outcome in the presence of normal structural MRI. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2020 , 40, 67-84	7.3	5
51	Nanoparticle-encapsulated antioxidant improves placental mitochondrial function in a sexually dimorphic manner in a rat model of prenatal hypoxia. <i>FASEB Journal</i> , 2021 , 35, e21338	0.9	5
50	Disruption of the TCA cycle reveals an ATF4-dependent integration of redox and amino acid metabolism <i>ELife</i> , 2021 , 10,	8.9	5

(2014-2017)

49	ClickIn: a flexible protocol for quantifying mitochondrial uptake of nucleobase derivatives. <i>Interface Focus</i> , 2017 , 7, 20160117	3.9	4
48	Genes and lipids that impact uptake and assimilation of exogenous coenzyme Q in Saccharomyces cerevisiae. <i>Free Radical Biology and Medicine</i> , 2020 , 154, 105-118	7.8	4
47	The effect on mitochondrial function of the tRNA Ser(UCN)/COI A7445G mtDNA point mutation associated with maternally-inherited sensorineural deafness. <i>IUBMB Life</i> , 1997 , 42, 567-75	4.7	4
46	Overview of protein glutathionylation. <i>Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al]</i> , 2006 , Chapter 6, Unit6.10	1	4
45	Nrf2 activation reprograms macrophage intermediary metabolism and suppresses the type I interferon response <i>IScience</i> , 2022 , 25, 103827	6.1	4
44	ND3 Cys39 in complex I is exposed during mitochondrial respiration. <i>Cell Chemical Biology</i> , 2021 ,	8.2	4
43	Selective Delivery of Dicarboxylates to Mitochondria by Conjugation to a Lipophilic Cation via a Cleavable Linker. <i>Molecular Pharmaceutics</i> , 2020 , 17, 3526-3540	5.6	4
42	Detection of changes in mitochondrial hydrogen sulfide in the fish model (Poeciliidae). <i>Biology Open</i> , 2019 , 8,	2.2	4
41	Why succinate? Physiological regulation by a mitochondrial coenzyme Q sentinel <i>Nature Chemical Biology</i> , 2022 , 18, 461-469	11.7	4
40	Signed-For Delivery in the Mitochondrial Matrix: Confirming Uptake into Mitochondria. <i>Small Methods</i> , 2018 , 2, 1700297	12.8	3
40 39		12.8	3
	Methods, 2018 , 2, 1700297	12.8	
39	Methods, 2018, 2, 1700297 Targeting Antioxidants to Mitochondria by Conjugation to Lipophilic Cations575-587 Mitochondria-targeted antioxidants do not prevent tumour necrosis factor-induced necrosis of		3
39	Methods, 2018, 2, 1700297 Targeting Antioxidants to Mitochondria by Conjugation to Lipophilic Cations575-587 Mitochondria-targeted antioxidants do not prevent tumour necrosis factor-induced necrosis of L929 cells. Free Radical Research, 2007, 41, 1041-6 Isolating adverse effects of glucocorticoids on the embryonic cardiovascular system. FASEB Journal,	4	3
39 38 37	Targeting Antioxidants to Mitochondria by Conjugation to Lipophilic Cations575-587 Mitochondria-targeted antioxidants do not prevent tumour necrosis factor-induced necrosis of L929 cells. Free Radical Research, 2007, 41, 1041-6 Isolating adverse effects of glucocorticoids on the embryonic cardiovascular system. FASEB Journal, 2020, 34, 9664-9677 Mitochondria antioxidant protection against cardiovascular dysfunction programmed by	0.9	3 3 3
39 38 37 36	Methods, 2018, 2, 1700297 Targeting Antioxidants to Mitochondria by Conjugation to Lipophilic Cations575-587 Mitochondria-targeted antioxidants do not prevent tumour necrosis factor-induced necrosis of L929 cells. Free Radical Research, 2007, 41, 1041-6 Isolating adverse effects of glucocorticoids on the embryonic cardiovascular system. FASEB Journal, 2020, 34, 9664-9677 Mitochondria antioxidant protection against cardiovascular dysfunction programmed by early-onset gestational hypoxia. FASEB Journal, 2021, 35, e21446 Mitochondria-targeted antioxidant MitoQ ameliorates ischaemia-reperfusion injury in kidney	0.9	3 3 3
39 38 37 36 35	Targeting Antioxidants to Mitochondria by Conjugation to Lipophilic Cations575-587 Mitochondria-targeted antioxidants do not prevent tumour necrosis factor-induced necrosis of L929 cells. Free Radical Research, 2007, 41, 1041-6 Isolating adverse effects of glucocorticoids on the embryonic cardiovascular system. FASEB Journal, 2020, 34, 9664-9677 Mitochondria antioxidant protection against cardiovascular dysfunction programmed by early-onset gestational hypoxia. FASEB Journal, 2021, 35, e21446 Mitochondria-targeted antioxidant MitoQ ameliorates ischaemia-reperfusion injury in kidney transplantation models. British Journal of Surgery, 2021, 108, 1072-1081 Energy Metabolites as Biomarkers in Ischemic and Dilated Cardiomyopathy. International Journal of	40.90.95.3	3 3 3 3

31	Mitochondria-Targeted Antioxidants. Oxidative Stress and Disease, 2012, 111-114		2
30	Characterization of the erythrocyte superoxide dismutase allozymes in the deer Cervus elaphus. <i>Animal Genetics</i> , 1997 , 28, 299-301	2.5	2
29	Measurement of protein glutathionylation. <i>Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al]</i> , 2006 , Chapter 6, Unit6.11	1	2
28	Mitochondrial ROS production during ischemia-reperfusion injury 2020 , 513-538		2
27	Nucleotide-binding sites can enhance N-acylation of nearby protein lysine residues. <i>Scientific Reports</i> , 2020 , 10, 20254	4.9	2
26	mtDNA mutations help support cancer cells <i>Nature Cancer</i> , 2020 , 1, 941-942	15.4	2
25	Accelerating cryoprotectant diffusion kinetics improves cryopreservation of pancreatic islets. <i>Scientific Reports</i> , 2021 , 11, 10418	4.9	2
24	Effective therapeutic strategies in a preclinical mouse model of Charcot-Marie-Tooth disease. <i>Human Molecular Genetics</i> , 2021 , 30, 2441-2455	5.6	2
23	Mitochondrial Diseases: Shortcuts to Therapies and Therapeutic Shortcuts. <i>Molecular Cell</i> , 2016 , 64, 5-6	17.6	2
22	MitoQ Inhibits Human Breast Cancer Cell Migration, Invasion and Clonogenicity Cancers, 2022, 14,	6.6	2
21	Mitochondrial-Targeted Antioxidant (MitoQ) Improves Vascular Function in Healthy Late Middle-Aged and Older Adults. <i>FASEB Journal</i> , 2018 , 32, 845.8	0.9	1
20	Bridging the gap between nature and antioxidant setbacks: delivering caffeic acid to mitochondria. <i>Methods in Molecular Biology</i> , 2015 , 1265, 73-83	1.4	1
19	Enhancing the Mitochondrial Uptake of Phosphonium Cations by Carboxylic Acid Incorporation. <i>Frontiers in Chemistry</i> , 2020 , 8, 783	5	1
18	Abrogating mitochondrial ROS in neurons or astrocytes reveals cell-specific impact on mouse behaviour. <i>Redox Biology</i> , 2021 , 41, 101917	11.3	1
17	Tetra-arylborate lipophilic anions as targeting groups. <i>Chemical Communications</i> , 2021 , 57, 3147-3150	5.8	1
16	Photoactivated release of membrane impermeant sulfonates inside cells. <i>Chemical Communications</i> , 2021 , 57, 3917-3920	5.8	1
15	Focally administered succinate improves cerebral metabolism in traumatic brain injury patients with mitochondrial dysfunction. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2021 , 271678X2110421	723	1
14	Reply to: In vivo quantification of mitochondrial membrane potential. <i>Nature</i> , 2020 , 583, E19-E20	50.4	0

LIST OF PUBLICATIONS

13	Noninvasive Biomarkers for Cardiovascular Dysfunction Programmed in Male Offspring of Adverse Pregnancy. <i>Hypertension</i> , 2021 , 78, 1818-1828	8.5	О
12	Mitochondria-targeted antioxidant therapy with MitoQ ameliorates age-related vascular endothelial dysfunction. <i>FASEB Journal</i> , 2013 , 27, 1125.10	0.9	0
11	Insights on Targeting Small Molecules to the Mitochondrial Matrix and the Preparation of MitoB and MitoP as Exomarkers of Mitochondrial Hydrogen Peroxide. <i>Methods in Molecular Biology</i> , 2021 , 2275, 87-117	1.4	О
10	Silver Clusters of Five Atoms as Highly Selective Antitumoral Agents Through Irreversible Oxidation of Thiols. <i>Advanced Functional Materials</i> ,2113028	15.6	0
9	208 Cardioprotection by the mitochondria-targeted superoxide generator mitoparaquat in a murine model of acute myocardial ischaemia reperfusion injury. <i>Heart</i> , 2017 , 103, A138.3-A139	5.1	
8	6 S-Nitrosation of a Cysteine Switch on Mitochondrial Complex I Protects from Acute Ischaemia-Reperfusion Damage and Post Myocardial Infarction Heart Failure. <i>Heart</i> , 2014 , 100, A3.2-A3	5.1	
7	022 MitoQ10 decreases AMPK activation in endothelial cells from patients with coronary artery disease and diabetes. <i>Heart</i> , 2010 , 96, A15.1-A15	5.1	
6	021 Therapeutic effects of MitoQ10 on hypertension and cardiac hypertrophy. <i>Heart</i> , 2010 , 96, A14.2-A	151	
5	INDUCTION OF THE MITOCHONDRIAL PERMEABILITY TRANSITION BY PEROXYNITRITE. Biochemical Society Transactions, 1997 , 25, 383S-383S	5.1	
4	PEROXYNITRITE FORMATION AND MITOCHONDRIAL CALCIUM EFFLUX MAY BE INVOLVED IN CELL DEATH CAUSED BY THE PARKINSONIAN NEUROTOXIN MPP+. <i>Biochemical Society Transactions</i> , 1996 , 24, 544S-544S	5.1	
3	MITOCHONDRIAL TURNOVER AND DEGRADATION DURING APOPTOSIS IN PC12 CELLS. Biochemical Society Transactions, 1996 , 24, 544S-544S	5.1	
2	special feature: from in vitro curiosity to contributor to cell pathology. <i>Biochemist</i> , 2006 , 28, 33-36	0.5	

MitoQ protects against cold ischemic injury in renal cells and rat kidneys. FASEB Journal, 2010, 24, 1059.8.9