Zane W Bell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7715129/publications.pdf Version: 2024-02-01

ZANE W RELL

4

#	Article	IF	CITATIONS
1	Temperature-Dependent Properties of BC-412 Polyvinyl Toluene Scintillator. IEEE Transactions on Nuclear Science, 2022, 69, 942-951.	2.0	3
2	Announcing the New Senior Editor for the Real Time Conference. IEEE Transactions on Nuclear Science, 2022, 69, 545-545.	2.0	0
3	Announcing a New Associate Editor for the Real Time Conference. IEEE Transactions on Nuclear Science, 2022, 69, 990-990.	2.0	0
4	Announcing the New Associate Editor for Nuclear Power Instrumentation and Control. IEEE Transactions on Nuclear Science, 2021, 68, 1-1.	2.0	0
5	IEEE Transactions on Nuclear Science 2021 Best Paper Award. IEEE Transactions on Nuclear Science, 2021, 68, 2450-2451.	2.0	0
6	Scintillators and Scintillation Detectors. , 2021, , 413-449.		0
7	IEEE Transactions on Nuclear Science 2020 Best Paper Award. IEEE Transactions on Nuclear Science, 2020, 67, 1778-1779.	2.0	0
8	K ₂ CuX ₃ (X = Cl, Br): All-Inorganic Lead-Free Blue Emitters with Near-Unity Photoluminescence Quantum Yield. Chemistry of Materials, 2020, 32, 6197-6205.	6.7	109
9	Announcing the New Associate Editor for Radiation Instrumentation Papers on Scintillators. IEEE Transactions on Nuclear Science, 2020, 67, 2464-2464.	2.0	0
10	Scintillators and Scintillation Detectors. , 2020, , 1-37.		0
11	Changing of the Guard: Introducing the New Senior Editor for Radiation Instrumentation Papers. IEEE Transactions on Nuclear Science, 2020, 67, 1986-1986.	2.0	0
12	Introducing the New Associate Editor for Accelerator Technology Papers. IEEE Transactions on Nuclear Science, 2020, 67, 2302-2302.	2.0	0
13	IEEE Transactions on Nuclear Science 2019 Best Paper Award. IEEE Transactions on Nuclear Science, 2019, 66, 1922-1923.	2.0	0
14	Ecological diversity in computing and nuclear technology research. , 2018, , .		0
15	Ghost Science. , 2017, , .		2
16	Neutron detection with LiInSe ₂ . Proceedings of SPIE, 2015, , .	0.8	8
17	Investigation of Active Background From Photofission in Depleted Uranium Using Cherenkov Detectors and Gamma Ray Time-of-Flight Analysis. IEEE Transactions on Nuclear Science, 2014, 61, 2402-2409.	2.0	3

18 Wavelength-based neutron/gamma ray discrimination in CLYC. , 2014, , .

ZANE W BELL

0

#	Article	IF	CITATIONS
19	Scholarly literature and the press: scientific impact and social perception of physics computing. Journal of Physics: Conference Series, 2014, 513, 062039.	0.4	1
20	Radioactive Decays in Geant4. IEEE Transactions on Nuclear Science, 2013, 60, 2966-2983.	2.0	49
21	Measurements of Thermal Neutron Response in Cherenkov Glasses Designed for MeV Photon Detection. IEEE Transactions on Nuclear Science, 2013, 60, 701-707.	2.0	5
22	Validation of Geant4-Based Radioactive Decay Simulation. IEEE Transactions on Nuclear Science, 2013, 60, 2984-2997.	2.0	22
23	Characterizing the radiation response of Cherenkov glass detectors with isotopic sources. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295, 1143-1151.	1.5	8
24	Simulated response of Cherenkov glass detectors to MeV photons. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295, 1321-1329.	1.5	7
25	Design of a ZnS/ ⁶ LiF moderated neutron detector. , 2013, , .		0
26	Publication patterns in HEP computing. Journal of Physics: Conference Series, 2012, 396, 062015.	0.4	1
27	Large area portable neutron detectors Helium-3 alternatives. , 2012, , .		0
28	Python for Development of OpenMP and CUDA Kernels for Multidimensional Data. , 2011, , .		0
29	Evaluation of neutron and gamma detectors for high-temperature well-logging applications. , 2011, , .		1
30	An activation experiment with laser-accelerated high-energy protons to optimize the graded-z shield design for the IXO/ATHENA satellite missions. , 2011, , .		0
31	Study of charge transport mechanisms in ZnO-ZnTe nanojunctions. , 2010, , .		1
32	Measurement of Neutron Yields From \${m UF}_{4}\$. IEEE Transactions on Nuclear Science, 2010, 57, 2239-2246.	2.0	19
33	A structured organic scintillator for neutron imaging. , 2010, , .		0
34	ZnO–ZnTe nanocone heterojunctions. Applied Physics Letters, 2010, 96, 193116.	3.3	25
35	A New Scintillator for Fast Neutron Detection: Single-Crystal \${m CeCl}_{3}({m CH}_{3}{m) Tj ETQq1 1 0.784	814 rgBT / 2.0	Overlock 10

The butterfly effect: Correlations between modeling in nuclear-particle physics and socioeconomic factors. , 2010, , .

ARTICLE IF CITATIONS Neutron Detection via the Cherenkov Effect. IEEE Transactions on Nuclear Science, 2010, , . Geant4 in scientific literature., 2009, , . 38 6 A neutron imaging detector from bundled lithium silicate glass fibers., 2009, , . Progress and validation of Geant4 based radioactive decay simulation using the examples of Simbol-X 40 3 and IXO., 2009, , . Gadolinium loaded plastic scintillators for high efficiency neutron detection. Physics Procedia, 2009, 1.2 2, 161-170. Writing Software or Writing Scientific Articles?. IEEE Transactions on Nuclear Science, 2008, 55, 42 2.0 9 671-678. The impact of technological research through an analysis of literature., 2008,,. Neutron detection via the Cherenkov effect., 2007,,. 44 0 Writing software or writing scientific articles?., 2007, , . 1 Unfolding of cryogenic neutron spectra. Nuclear Instruments and Methods in Physics Research, 46 1.6 3 Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 579, 165-168. Neutron absorption spectroscopy for identification of light elements in actinides. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 559, 745-747. 1.6 Editorial Changes in Editorial Structure for Radiation Instrumentation Manuscripts. IEEE 48 2.0 0 Transactions on Nuclear Science, 2005, 52, 707-707. Specific heat measurements of TiB2 and 6LiF from 0.5 to 30K. Journal of Nuclear Materials, 2005, 347, 2.7 125-133. Neutron detection with cryogenics and semiconductors. Physica Status Solidi C: Current Topics in 50 0.8 22 Solid State Physics, 2005, 2, 1592-1605. Micro-Raman and photoluminescence spectroscopies of horizontal Bridgman-grown AgGaSe2. Journal of Applied Physics, 2005, 98, 093523. Monte Carlo analysis of a mercuric iodide neutron/gamma detector. IEEE Transactions on Nuclear 52 2.0 2 Science, 2005, 52, 2030-2034. Neutron detection with mercuric iodide. IEEE Transactions on Nuclear Science, 2004, 51, 1163-1165. Crystal growth, characterization, and fabrication of AgGaSe 2 crystals as novel material for 54

7

ZANE W BELL

room-temperature radiation detectors., 2004, 5540, 177.

ZANE W BELL

#	Article	IF	CITATIONS
55	Microcalorimeter design for fast-neutron spectroscopy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 520, 70-72.	1.6	10
56	Boron-loaded silicone rubber scintillators. IEEE Transactions on Nuclear Science, 2004, 51, 1773-1776.	2.0	24
57	Analysis of a radiation attribute from uranium in storage. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 505, 494-497.	1.6	0
58	Organic scintillators for neutron detection. , 2003, 4784, 150.		23
59	Polycrystalline mercuric iodide films: deposition, properties, and detector performance. IEEE Transactions on Nuclear Science, 2002, 49, 1965-1967.	2.0	8
60	Photoneutron source based on a compact 10MeV betatron. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 422, 5-9.	1.6	19
61	Detection of Concealed Mercury with Thermal Neutrons. , 1995, , 1159-1165.		1
62	A Bayesian/Monte Carlo segmentation method for images dominated by Gaussian noise. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11, 985-990.	13.9	9
63	A digital pulse-pair detecting circuit. Nuclear Instruments & Methods in Physics Research, 1983, 211, 551-553.	0.9	0
64	Fine structure in thePb208photoneutron cross section between 9.9 and 11.2 MeV. Physical Review C, 1982, 25, 791-803.	2.9	26
65	Tests on a digital neutron-gamma pulse shape discriminator with NE213. Nuclear Instruments & Methods in Physics Research, 1981, 188, 105-109.	0.9	52

66 Monte Carlo Analysis of Energy Deposition in a Cryogenic Neutron Detector. , 0, , .

1