
Gerard D Schellenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7714836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 2013, 45, 1452-1458.	21.4	3,741
2	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	21.4	1,962
3	Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature Genetics, 2011, 43, 436-441.	21.4	1,676
4	Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Movement Disorders, 2017, 32, 853-864.	3.9	1,402
5	Tau is a candidate gene for chromosome 17 frontotemporal dementia. Annals of Neurology, 1998, 43, 815-825.	5.3	1,257
6	A framework for the interpretation of de novo mutation in human disease. Nature Genetics, 2014, 46, 944-950.	21.4	943
7	Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders. American Journal of Human Genetics, 2014, 94, 677-694.	6.2	819
8	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	21.4	783
9	New insights into the genetic etiology of Alzheimer's disease and related dementias. Nature Genetics, 2022, 54, 412-436.	21.4	700
10	Meta-analysis Confirms CR1, CLU, and PICALM as Alzheimer Disease Risk Loci and Reveals Interactions With APOE Genotypes. Archives of Neurology, 2010, 67, 1473.	4.5	376
11	Common polygenic variation enhances risk prediction for Alzheimer's disease. Brain, 2015, 138, 3673-3684.	7.6	359
12	Neurodegeneration and defective neurotransmission in a <i>Caenorhabditis elegans</i> model of tauopathy. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9980-9985.	7.1	336
13	A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease. Nature Neuroscience, 2017, 20, 1052-1061.	14.8	330
14	Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score. PLoS Medicine, 2017, 14, e1002258.	8.4	311
15	Genome-Wide Association Meta-analysis of Neuropathologic Features of Alzheimer's Disease and Related Dementias. PLoS Genetics, 2014, 10, e1004606.	3.5	305
16	Exceptionally low likelihood of Alzheimer's dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nature Communications, 2020, 11, 667.	12.8	246
17	Sex-Specific Association of Apolipoprotein E With Cerebrospinal Fluid Levels of Tau. JAMA Neurology, 2018, 75, 989.	9.0	223
18	The genetics and neuropathology of Alzheimer's disease. Acta Neuropathologica, 2012, 124, 305-323.	7.7	203

2

#	Article	IF	CITATIONS
19	Genome-wide association study identifies four novel loci associated with Alzheimer's endophenotypes and disease modifiers. Acta Neuropathologica, 2017, 133, 839-856.	7.7	199
20	Whole exome sequencing study identifies novel rare and common Alzheimer's-Associated variants involved in immune response and transcriptional regulation. Molecular Psychiatry, 2020, 25, 1859-1875.	7.9	191
21	Assessment of the genetic variance of late-onset Alzheimer's disease. Neurobiology of Aging, 2016, 41, 200.e13-200.e20.	3.1	174
22	Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 658-671.	0.8	173
23	Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy. Nature Communications, 2015, 6, 7247.	12.8	170
24	Effects of Multiple Genetic Loci on Age at Onset in Late-Onset Alzheimer Disease. JAMA Neurology, 2014, 71, 1394.	9.0	166
25	Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease. PLoS ONE, 2014, 9, e94661.	2.5	155
26	Association Between Genetic Traits for Immune-Mediated Diseases and Alzheimer Disease. JAMA Neurology, 2016, 73, 691.	9.0	151
27	Genomic variants, genes, and pathways of Alzheimer's disease: An overview. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 5-26.	1.7	147
28	Polygenic Overlap Between C-Reactive Protein, Plasma Lipids, and Alzheimer Disease. Circulation, 2015, 131, 2061-2069.	1.6	145
29	Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel. JAMA Neurology, 2021, 78, 102.	9.0	144
30	Common variants in Alzheimer's disease and risk stratification by polygenic risk scores. Nature Communications, 2021, 12, 3417.	12.8	140
31	Transmission of tauopathy strains is independent of their isoform composition. Nature Communications, 2020, 11, 7.	12.8	121
32	Ancestral origin of ApoE ε4 Alzheimer disease risk in Puerto Rican and African American populations. PLoS Genetics, 2018, 14, e1007791.	3.5	117
33	Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies. PLoS Medicine, 2018, 15, e1002487.	8.4	111
34	Missense variant in TREML2 protects against Alzheimer's disease. Neurobiology of Aging, 2014, 35, 1510.e19-1510.e26.	3.1	110
35	A novel mutation at position +12 in the intron following Exon 10 of the tau gene in familial frontotemporal dementia (FTD-Kumamoto). Annals of Neurology, 2000, 47, 422-429.	5.3	109
36	Genetic architecture of sporadic frontotemporal dementia and overlap with Alzheimer's and Parkinson's diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 152-164.	1.9	107

GERARD D SCHELLENBERG

#	Article	IF	CITATIONS
37	Association of MAPT haplotypes with Alzheimer's disease risk and MAPT brain gene expression levels. Alzheimer's Research and Therapy, 2014, 6, 39.	6.2	106
38	Dissecting the genetic relationship between cardiovascular risk factors and Alzheimer's disease. Acta Neuropathologica, 2019, 137, 209-226.	7.7	100
39	Two rare <i>AKAP9</i> variants are associated with Alzheimer's disease in African Americans. Alzheimer's and Dementia, 2014, 10, 609.	0.8	94
40	Genetic variants and functional pathways associated with resilience to Alzheimer's disease. Brain, 2020, 143, 2561-2575.	7.6	93
41	Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia. Acta Neuropathologica, 2017, 133, 825-837.	7.7	90
42	Two novel loci, <i>COBL</i> and <i>SLC10A2</i> , for Alzheimer's disease in African Americans. Alzheimer's and Dementia, 2017, 13, 119-129.	0.8	87
43	Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathologica, 2018, 136, 857-872.	7.7	87
44	SUT-2 potentiates tau-induced neurotoxicity in Caenorhabditis elegans. Human Molecular Genetics, 2009, 18, 1825-1838.	2.9	86
45	Apolipoprotein E genotypes in Parkinson's disease with and without dementia. Annals of Neurology, 1995, 37, 242-245.	5.3	82
46	Polygenic hazard score: an enrichment marker for Alzheimer's associated amyloid and tau deposition. Acta Neuropathologica, 2018, 135, 85-93.	7.7	80
47	Selective Genetic Overlap Between Amyotrophic Lateral Sclerosis and Diseases of the Frontotemporal Dementia Spectrum. JAMA Neurology, 2018, 75, 860.	9.0	79
48	Examination of genetic linkage of chromosome 15 to schizophrenia in a large Veterans Affairs Cooperative Study sample. American Journal of Medical Genetics Part A, 2001, 105, 662-668.	2.4	75
49	Association of an apolipoprotein CII allele with familial dementia of the Alzheimer type. Journal of Neurogenetics, 1987, 4, 97-108.	1.4	73
50	CXCR4 involvement in neurodegenerative diseases. Translational Psychiatry, 2018, 8, 73.	4.8	66
51	Sex differences in the genetic predictors of Alzheimer's pathology. Brain, 2019, 142, 2581-2589.	7.6	65
52	Polygenic hazard score, amyloid deposition and Alzheimer's neurodegeneration. Brain, 2019, 142, 460-470.	7.6	63
53	SUT-1 enables tau-induced neurotoxicity in C . elegans. Human Molecular Genetics, 2007, 16, 1959-1971.	2.9	62
54	<i>APOE</i> mRNA and protein expression in postmortem brain are modulated by an extended haplotype structure. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 409-417.	1.7	62

#	Article	IF	CITATIONS
55	Tau-Mediated NMDA Receptor Impairment Underlies Dysfunction of a Selectively Vulnerable Network in a Mouse Model of Frontotemporal Dementia. Journal of Neuroscience, 2014, 34, 16482-16495.	3.6	60
56	Genome-wide, high-content siRNA screening identifies the Alzheimer's genetic risk factor FERMT2 as a major modulator of APP metabolism. Acta Neuropathologica, 2017, 133, 955-966.	7.7	60
57	Presenilin-1 mutation alters NGF-induced neurite outgrowth, calcium homeostasis, and transcription factor (AP-1) activation in PC12 cells. Journal of Neuroscience Research, 1998, 52, 618-624.	2.9	59
58	Association of Rare Coding Mutations With Alzheimer Disease and Other Dementias Among Adults of European Ancestry. JAMA Network Open, 2019, 2, e191350.	5.9	58
59	Missense mutations in the chromosome 14 familial Alzheimer's disease presenilin 1 gene. Human Mutation, 1998, 11, 216-221.	2.5	54
60	Antisense-mediated Exon Skipping Decreases Tau Protein Expression: A Potential Therapy For Tauopathies. Molecular Therapy - Nucleic Acids, 2014, 3, e180.	5.1	54
61	Replication of progressive supranuclear palsy genome-wide association study identifies SLCO1A2 and DUSP10 as new susceptibility loci. Molecular Neurodegeneration, 2018, 13, 37.	10.8	54
62	Modulation of the age at onset of Parkinson's disease by apolipoprotein E genotypes. Annals of Neurology, 1997, 42, 655-658.	5.3	52
63	C9orf72 intermediate repeats are associated with corticobasal degeneration, increased C9orf72 expression and disruption of autophagy. Acta Neuropathologica, 2019, 138, 795-811.	7.7	50
64	Gene expression, methylation and neuropathology correlations at progressive supranuclear palsy risk loci. Acta Neuropathologica, 2016, 132, 197-211.	7.7	49
65	Polygenic hazard scores in preclinical Alzheimer disease. Annals of Neurology, 2017, 82, 484-488.	5.3	49
66	<i>PARK10</i> is a major locus for sporadic neuropathologically confirmed Parkinson disease. Neurology, 2015, 84, 972-980.	1.1	48
67	Rare Functional Variant in TM2D3 is Associated with Late-Onset Alzheimer's Disease. PLoS Genetics, 2016, 12, e1006327.	3.5	47
68	INFERNO: inferring the molecular mechanisms of noncoding genetic variants. Nucleic Acids Research, 2018, 46, 8740-8753.	14.5	46
69	Sex-dependent autosomal effects on clinical progression of Alzheimer's disease. Brain, 2020, 143, 2272-2280.	7.6	46
70	Association of an apolipoprotein CII allele with familial dementia of the Alzheimer type. Journal of Neurogenetics, 1987, 4, 97-108.	1.4	44
71	Genetic and neuroanatomic associations in sporadic frontotemporal lobar degeneration. Neurobiology of Aging, 2014, 35, 1473-1482.	3.1	43
72	Global and local ancestry in Africanâ€Americans: Implications for Alzheimer's disease risk. Alzheimer's and Dementia, 2016, 12, 233-243.	0.8	42

#	Article	IF	CITATIONS
73	Rarity of the Alzheimer Disease–Protective <i>APP</i> A673T Variant in the United States. JAMA Neurology, 2015, 72, 209.	9.0	41
74	Early-Onset Alzheimer Disease and Candidate Risk Genes Involved in Endolysosomal Transport. JAMA Neurology, 2017, 74, 1113.	9.0	41
75	Association of Long Runs of Homozygosity With Alzheimer Disease Among African American Individuals. JAMA Neurology, 2015, 72, 1313.	9.0	39
76	Discovery of gene-gene interactions across multiple independent data sets of late onset Alzheimer disease from the Alzheimer Disease Genetics Consortium. Neurobiology of Aging, 2016, 38, 141-150.	3.1	39
77	A rare missense variant of <i>CASP7</i> is associated with familial lateâ€onset Alzheimer's disease. Alzheimer's and Dementia, 2019, 15, 441-452.	0.8	39
78	Caspase-8, association with Alzheimer's Disease and functional analysis of rare variants. PLoS ONE, 2017, 12, e0185777.	2.5	38
79	Analysis of Whole-Exome Sequencing Data for Alzheimer Disease Stratified by <i>APOE</i> Genotype. JAMA Neurology, 2019, 76, 1099.	9.0	32
80	Identification of seven novel loci associated with amino acid levels using single-variant and gene-based tests in 8545 Finnish men from the METSIM study. Human Molecular Genetics, 2018, 27, 1664-1674.	2.9	30
81	Activity of the poly(A) binding protein MSUT2 determines susceptibility to pathological tau in the mammalian brain. Science Translational Medicine, 2019, 11, .	12.4	30
82	In vitro amplification of pathogenic tau conserves disease-specific bioactive characteristics. Acta Neuropathologica, 2021, 141, 193-215.	7.7	30
83	Genome-wide pleiotropy analysis of neuropathological traits related to Alzheimer's disease. Alzheimer's Research and Therapy, 2018, 10, 22.	6.2	27
84	TSC1 loss increases risk for tauopathy by inducing tau acetylation and preventing tau clearance via chaperone-mediated autophagy. Science Advances, 2021, 7, eabg3897.	10.3	27
85	Quality control and integration of genotypes from two calling pipelines for whole genome sequence data in the Alzheimer's disease sequencing project. Genomics, 2019, 111, 808-818.	2.9	26
86	Sex differences in the genetic architecture of cognitive resilience to Alzheimer's disease. Brain, 2022, 145, 2541-2554.	7.6	26
87	Genomeâ€wide linkage analyses of nonâ€Hispanic white families identify novel loci for familial lateâ€onset Alzheimer's disease. Alzheimer's and Dementia, 2016, 12, 2-10.	0.8	24
88	NIAGADS: The NIA Genetics of Alzheimer's Disease Data Storage Site. Alzheimer's and Dementia, 2016, 12, 1200-1203.	0.8	24
89	Male-specific epistasis between WWC1 and TLN2 genes is associated with Alzheimer's disease. Neurobiology of Aging, 2018, 72, 188.e3-188.e12.	3.1	24
90	Gene-based analysis in HRC imputed genome wide association data identifies three novel genes for Alzheimer's disease. PLoS ONE, 2019, 14, e0218111.	2.5	23

GERARD D SCHELLENBERG

#	Article	IF	CITATIONS
91	VCPA: genomic variant calling pipeline and data management tool for Alzheimer's Disease Sequencing Project. Bioinformatics, 2019, 35, 1768-1770.	4.1	23
92	One for all and all for One: Improving replication of genetic studies through network diffusion. PLoS Genetics, 2018, 14, e1007306.	3.5	22
93	Inferring the Molecular Mechanisms of Noncoding Alzheimer's Disease-Associated Genetic Variants. Journal of Alzheimer's Disease, 2019, 72, 301-318.	2.6	19
94	Genomeâ€wide association and multiâ€omics studies identify <i>MGMT</i> as a novel risk gene for Alzheimer's disease among women. Alzheimer's and Dementia, 2023, 19, 896-908.	0.8	19
95	A locus at 19q13.31 significantly reduces the ApoE ε4 risk for Alzheimer's Disease in African Ancestry. PLoS Genetics, 2022, 18, e1009977.	3.5	19
96	High copy wildtype human 1N4R tau expression promotes early pathological tauopathy accompanied by cognitive deficits without progressive neurofibrillary degeneration. Acta Neuropathologica Communications, 2015, 3, 33.	5.2	18
97	Protein phosphatase 2A and complement component 4 are linked to the protective effect of <i>APOE</i> É>2 for Alzheimer's disease. Alzheimer's and Dementia, 2022, 18, 2042-2054.	0.8	18
98	Progranulin mutations in clinical and neuropathological Alzheimer's disease. Alzheimer's and Dementia, 2022, 18, 2458-2467.	0.8	12
99	A scoring strategy combining statistics and functional genomics supports a possible role for common polygenic variation in autism. Frontiers in Genetics, 2014, 5, 33.	2.3	10
100	Association of mitochondrial variants and haplogroups identified by whole exome sequencing with Alzheimer's disease. Alzheimer's and Dementia, 2021, , .	0.8	9
101	CpGâ€related SNPs in the MS4A region have a doseâ€dependent effect on risk of late–onset Alzheimer disease. Aging Cell, 2019, 18, e12964.	6.7	8
102	Evidence against DNA polymerase ? as a candidate gene for Werner syndrome. Human Genetics, 1994, 93, 507-12.	3.8	7
103	Genetic influences on cognition in progressive supranuclear palsy. Movement Disorders, 2017, 32, 1764-1771.	3.9	6
104	Impact of apolipoprotein E genotypes on vitamin E and memantine treatment outcomes in Alzheimer's disease. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2018, 4, 344-349.	3.7	6
105	Insoluble Tau From Human FTDP-17 Cases Exhibit Unique Transmission Properties In Vivo. Journal of Neuropathology and Experimental Neurology, 2020, 79, 941-949.	1.7	6
106	A novel mutation at position +12 in the intron following Exon 10 of the tau gene in familial frontotemporal dementia (FTDâ€Kumamoto). Annals of Neurology, 2000, 47, 422-429.	5.3	6
107	LRP10 variants in progressive supranuclear palsy. Neurobiology of Aging, 2020, 94, 311.e5-311.e10.	3.1	6
108	Latent trait modeling of tau neuropathology in progressive supranuclear palsy. Acta Neuropathologica, 2021, 141, 667-680.	7.7	5

#	Article	IF	CITATIONS
109	An association test of the spatial distribution of rare missense variants within protein structures identifies Alzheimer's disease–related patterns. Genome Research, 2022, 32, 778-790.	5.5	5
110	Integration of GWAS and brain transcriptomic analyses in a multiethnic sample of 35,245 older adults identifies <i>DCDC2</i> gene as predictor of episodic memory maintenance. Alzheimer's and Dementia, 2022, 18, 1797-1811.	0.8	5
111	THE FREQUENCY OF C4B VARIANTS OF COMPLEMENT IN FAMILIAL AND SPORADIC ALZHEIMER DISEASE. Alzheimer Disease and Associated Disorders, 1987, 1, 251-255.	1.3	4
112	[O1–O3–O1]: GENOMEâ€WIDE RARE VARIANT IMPUTATION AND TISSUEâ€SPECIFIC TRANSCRIPTOMIC ANAL IDENTIFY NOVEL RARE VARIANT CANDIDATE LOCI IN LATEâ€ONSET ALZHEIMER'S DISEASE: THE ALZHEIMER'S DISEASE GENETICS CONSORTIUM. Alzheimer's and Dementia, 2017, 13, P189.	YSIS 0.8	4
113	Fibrillation and molecular characteristics are coherent with clinical and pathological features of 4-repeat tauopathy caused by MAPT variant G273R. Neurobiology of Disease, 2020, 146, 105079.	4.4	4
114	Copy Number Variation Identification on 3,800 Alzheimer's Disease Whole Genome Sequencing Data from the Alzheimer's Disease Sequencing Project. Frontiers in Genetics, 2021, 12, 752390.	2.3	4
115	Alzheimer's Disease Variant Portal: A Catalog of Genetic Findings for Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, 86, 461-477.	2.6	4
116	Neuropathological lesions and their contribution to dementia and cognitive impairment in a heterogeneous clinical population. Alzheimer's and Dementia, 2022, 18, 2403-2412.	0.8	4
117	The Alzheimer's disease sequencing project–follow up study (ADSPâ€FUS): Increasing ethnic diversity in Alzheimer's genetics research with addition of potential new cohorts. Alzheimer's and Dementia, 2020, 16, e046400.	0.8	3
118	O1-03-03: Identification of Novel Candidate Genes for Early-Onset Alzheimer's Disease Through Integrated Whole-Exome Sequencing and Exome Chip Array Association Analysis. , 2016, 12, P177-P178.		2
119	Genome-wide association study of brain arteriolosclerosis. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1437-1450.	4.3	2
120	APOEâ€stratified genomeâ€wide association analysis identifies novel Alzheimer disease candidate risk loci for African Americans. Alzheimer's and Dementia, 2021, 17, e056383.	0.8	2
121	P1-045: EXOME ARRAY ANALYSIS IDENTIFIES NOVEL RISK VARIANTS FOR ALZHEIMER'S DISEASE WITH ONSET BEFORE 65 YEARS. , 2014, 10, P319-P319.		1
122	P1â€018: Rare Deleterious And Lossâ€ofâ€Function Variants in <i>OPRL1</i> and <i>GAS2L2</i> Contribute to the Risk of Lateâ€Onset Alzheimer's Disease: Alzheimer's Disease Sequencing Project Caseâ€Control Stud Alzheimer's and Dementia, 2016, 12, P406.	lyo.8	1
123	Genomeâ€wide metaâ€analysis of lateâ€onset Alzheimer's disease using rare variant imputation in 65,602 subjects identifies risk loci with roles in memory, neurodevelopment, and cardiometabolic traits: The international genomics of Alzheimer's project (IGAP). Alzheimer's and Dementia, 2020, 16, e044193.	0.8	1
124	NIA genetics of Alzheimer's disease data storage site (NIAGADS): Update 2020. Alzheimer's and Dementia, 2020, 16, e044284.	0.8	1
125	Gene-Environment Interactions in Progressive Supranuclear Palsy. Frontiers in Neurology, 2021, 12, 664796.	2.4	1
126	The Seattle Alzheimer's disease data set. Genetic Epidemiology, 1993, 10, 365-369.	1.3	0

#	Article	IF	CITATIONS
127	Regulation of Four-Repeat tau Expression: Interactions between Exon and Intron Splicing Regulatory Sequences. , 0, , 87-95.		0
128	F1â€01â€02: Alzheimer's Disease Sequencing Project: Search for Alzheimer's Disease Resilience Genes That May Modify Disease Susceptibility in Specific Apoe Genotype Backgrounds. Alzheimer's and Dementia, 2016, 12, P162.	0.8	0
129	P2â€097: The Alzheimer's Disease Sequencing Project (ADSP): Data Production, Management, and Availability. Alzheimer's and Dementia, 2016, 12, P648.	0.8	0
130	P2â€077: Alzheimer's Disease Sequencing Project: Search for Alzheimer's Disease Resilience Genes That May Modify Disease Susceptibility in Specific <i>Apoe</i> Genotype Backgrounds. Alzheimer's and Dementia, 2016, 12, P638.	0.8	0
131	P2-083: Computational Identification of Regulatory Mechanisms Affected By Noncoding Variants Associated with Late-Onset Alzheimer's Disease. , 2016, 12, P640-P641.		0
132	P2â€085: Further Stratification of <i>APOE</i> E4â€Negative Subjects Identifies Novel Genes for Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P641.	0.8	0
133	P3â€082: Assessment of the Genetic Variance of Lateâ€Onset Alzheimer's Disease. Alzheimer's and Dementia 2016, 12, P849.	0.8	0
134	P3-093: NIA Genetics of Alzheimer's Disease Data Storage Site (NIAGADS): 2016 Update. , 2016, 12, P855-P856.		0
135	P3â€096: Secondary Analyses of International Genomics of Alzheimer's Project Stage I GWAS Summary Data Identifies Additional Variants Associated With Lateâ€Onset Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P856.	0.8	0
136	P4â€048: Convergent Analysis of Endophenotypes in Progressive Supranuclear Palsy. Alzheimer's and Dementia, 2016, 12, P1032.	0.8	0
137	F1-01-03: Rare Deleterious and Loss-of-Function Variants in OPRL1 and GAS2L2 Contribute to the Risk of Late-Onset Alzheimer's Disease: Alzheimer's Disease Sequencing Project Case-Control Study. , 2016, 12, P163-P163.		0
138	O1â€03â€02: <i>ABCA7</i> Frameshift Deletion Associated with Alzheimer's Disease in African Americans. Alzheimer's and Dementia, 2016, 12, P177.	0.8	0
139	O1-03-05: High-Resolution Imputation in Genome-Wide Association Studies of Late-Onset Alzheimer's Disease Identifies Novel Rare Variant Associations. , 2016, 12, P178-P179.		0
140	O1â€09â€03: Whole Genome Sequencing in Familial Lateâ€Onset Alzheimer's Disease Identifies Variations in TTC3 and FSIP2. Alzheimer's and Dementia, 2016, 12, P197.	0.8	0
141	O2â€06â€03: Tissueâ€Specific Genomeâ€Wide Predictions of Genetically Regulated Expression in Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P239.	0.8	0
142	O2â€10â€06: A Common Allele in <i>SPI1</i> Lowers Risk and Delays Age at Onset for Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P253.	0.8	0
143	P1â€122: Multivariate Phenotypes Association Study of Neuropathological Features of Alzheimer's Disease and Related Dementias. Alzheimer's and Dementia, 2016, 12, P450.	0.8	0
144	P1-117: Blood Gene Expression Changes Implicated in Alzheimer's Disease. , 2016, 12, P448-P448.		0

#	Article	IF	CITATIONS
145	P1â€129: Structural Variation (SV) in Heterogenous Wholeâ€Genome Sequencing Data from 111 Families at Risk For Alzheimer's Disease: Alzheimer's Disease Sequencing Project SV Study. Alzheimer's and Dementia, 2016, 12, P453.	0.8	0
146	[P3–097]: NIA GENETICS OF ALZHEIMER's DISEASE DATA STORAGE SITE (NIAGADS): 2017. Alzheimer's and Dementia, 2017, 13, P971.	0.8	0
147	[P4–074]: INTEGRATIVE SYSTEMS BIOLOGY APPROACH TO IDENTIFY NOVEL RISK FACTORS FOR PSP. Alzheimer's and Dementia, 2017, 13, P1286.	0.8	Ο
148	[P3–090]: THE ALZHEIMER's DISEASE SEQUENCING PROJECT (ADSP) DATA UPDATE 2017. Alzheimer's and Dementia, 2017, 13, P968.	0.8	0
149	P4â€044: THE GCAD CLOUDâ€BASED WORKFLOW FOR PROCESSING WHOLE EXOME AND WHOLE GENOME DA FROM THE ALZHEIMER'S DISEASE SEQUENCING PROJECT. Alzheimer's and Dementia, 2018, 14, P1450.	ТА 0.8	Ο
150	P2â€171: THE POLY(A) BINDING PROTEIN MSUT2 MODULATES GLIOSIS IN TAUOPATHY. Alzheimer's and Dementia, 2018, 14, P734.	0.8	0
151	P1â€156: CENEâ€BASED ANALYSES IN WHOLE GENOME SEQUENCING OF FAMILIAL LATEâ€ONSET ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P336.	0.8	Ο
152	P2â€⊋79: CSF SMALL RNA BIOMARKERS FOR ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P785.	0.8	0
153	P2â€106: AFRICAN AMERICAN WHOLE EXOME SEQUENCING SUGGESTS RISK CODING VARIANTS IN IDH1 GENE. Alzheimer's and Dementia, 2018, 14, P709.	0.8	Ο
154	P1â€139: THE CONTRIBUTION OF SEXâ€SPECIFIC ASSOCIATIONS IN GENETIC STUDIES OF ALZHEIMER'S DISEASE PATHOLOGY. Alzheimer's and Dementia, 2018, 14, P327.	0.8	0
155	P2â€108: WHOLEâ€GENOME SEQUENCING IN NONâ€HISPANIC WHITE FAMILIES IMPLICATES RARE VARIATION IN LATEâ€ONSET ALZHEIMER'S DISEASE RISK. Alzheimer's and Dementia, 2018, 14, P710.	0.8	Ο
156	O3â€13â€01: HIGHLY PENETRANT LATEâ€ONSET ALZHEIMER DISEASE VARIANTS IN NOTCH3 IN ASHKENAZI JEWS Alzheimer's and Dementia, 2019, 15, P918.	0.8	0
157	Sex differences in genetic predictors of resilience to Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e043259.	0.8	Ο
158	Alzheimer's disease variant portal (ADVP): Harmonized genetics data and evidence collection for Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e044090.	0.8	0
159	Genomeâ€wide profiling of the noncoding regulatory mechanisms in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e044268.	0.8	0
160	Mechanism for the protective effect of APOE $\hat{I}\mu 2$ against Alzheimer disease is linked to tau and the classical complement pathway. Alzheimer's and Dementia, 2020, 16, e044881.	0.8	0
161	Assessing whole genome sequencing variation for Alzheimer's disease in 4707 individuals from the Alzheimer's Disease Sequencing Project (ADSP). Alzheimer's and Dementia, 2020, 16, e045548.	0.8	Ο
162	Pleiotropy analyses using TADs identify genomic regions affecting risk of AD and stroke. Alzheimer's and Dementia, 2020, 16, e045975.	0.8	0

#	Article	IF	CITATIONS
163	Multimodal genomeâ€wide metaâ€analysis of brain amyloidosis reveals heterogeneity across CSF, PET, and pathological amyloid measures. Alzheimer's and Dementia, 2020, 16, e046009.	0.8	0
164	Mapping Alzheimer disease–associated regions in the African American population. Alzheimer's and Dementia, 2020, 16, e046072.	0.8	0
165	Genomeâ€wide interaction study of smoking in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e046149.	0.8	Ο
166	Heritability analyses show partial genetic overlap between (nonâ€Mendelian) early and late onset Alzheimer disease due to an intriguing APOE effect. Alzheimer's and Dementia, 2021, 17, e056143.	0.8	0
167	NIA genetics of Alzheimer's disease data storage site (NIAGADS): 2021 update Alzheimer's and Dementia, 2021, 17 Suppl 3, e052258.	0.8	Ο
168	Copy number variation (CNV) identification and association study on 3,928 Alzheimer's disease whole genome sequencing data from the Alzheimer's Disease Sequencing Project (ADSP) Alzheimer's and Dementia, 2021, 17 Suppl 3, e052721.	0.8	0
169	Characterization of regulatory roles of genetic signals curated from more than 200 GWA studies in the Alzheimer's Disease Variant Portal (ADVP) Alzheimer's and Dementia, 2021, 17 Suppl 3, e054255.	0.8	0
170	Genome-wide association and multi-omics studies identify MGMT as a novel risk gene for Alzheimer disease among women Alzheimer's and Dementia, 2021, 17 Suppl 3, e054483.	0.8	0
171	Multiple viruses detected in human DNA are associated with Alzheimer disease risk Alzheimer's and Dementia, 2021, 17 Suppl 3, e054585.	0.8	Ο
172	Sex differences in the genetic architecture underlying resilience in AD Alzheimer's and Dementia, 2021, 17 Suppl 3, e055010.	0.8	0
173	Sex-specific genetic predictors of memory performance Alzheimer's and Dementia, 2021, 17 Suppl 3, e056083.	0.8	Ο
174	The Alzheimer's Disease Sequencing Project - Follow Up Study (ADSP-FUS): Increasing ethnic diversity in Alzheimer's genetics research with the addition of potential new cohorts Alzheimer's and Dementia, 2021, 17 Suppl 3, e056101.	0.8	0
175	Admixture mapping identifies novel regions influencing Alzheimer disease in African Americans Alzheimer's and Dementia, 2021, 17 Suppl 3, e056443.	0.8	Ο
176	A large-scale, whole genome sequencing study of unexplained early-onset Alzheimer disease Alzheimer's and Dementia, 2021, 17 Suppl 3, e056664.	0.8	0