
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7714761/publications.pdf Version: 2024-02-01

OLEC LKODABLEV

#	Article	IF	CITATIONS
1	Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data. Science, 2006, 312, 400-404.	12.6	1,395
2	Phyllosilicates on Mars and implications for early martian climate. Nature, 2005, 438, 623-627.	27.8	825
3	Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover. Astrobiology, 2017, 17, 471-510.	3.0	371
4	Venus Express—The first European mission to Venus. Planetary and Space Science, 2007, 55, 1636-1652.	1.7	212
5	Discovery of an aurora on Mars. Nature, 2005, 435, 790-794.	27.8	203
6	A warm layer in Venus' cryosphere and high-altitude measurements of HF, HCl, H2O and HDO. Nature, 2007, 450, 646-649.	27.8	161
7	SPICAV on Venus Express: Three spectrometers to study the global structure and composition of the Venus atmosphere. Planetary and Space Science, 2007, 55, 1673-1700.	1.7	160
8	SPICAM on Mars Express: Observing modes and overview of UV spectrometer data and scientific results. Journal of Geophysical Research, 2006, 111, .	3.3	148
9	GOMOS on Envisat: an overview. Advances in Space Research, 2004, 33, 1020-1028.	2.6	142
10	Venus Express science planning. Planetary and Space Science, 2006, 54, 1279-1297.	1.7	142
11	Evidence of Water Vapor in Excess of Saturation in the Atmosphere of Mars. Science, 2011, 333, 1868-1871.	12.6	122
12	Global distribution of total ozone on Mars from SPICAM/MEX UV measurements. Journal of Geophysical Research, 2006, 111, .	3.3	120
13	Annual survey of water vapor vertical distribution and water–aerosol coupling in the martian atmosphere observed by SPICAM/MEx solar occultations. Icarus, 2013, 223, 942-962.	2.5	120
14	Nightglow in the Upper Atmosphere of Mars and Implications for Atmospheric Transport. Science, 2005, 307, 566-569.	12.6	119
15	The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	8.1	119
16	Vertical Structure of Martian Dust Measured by Solar Infrared Occultations from the Phobos Spacecraft. Icarus, 1993, 102, 76-87.	2.5	118
17	HDO and H ₂ O vertical distributions and isotopic ratio in the Venus mesosphere by Solar Occultation at Infrared spectrometer on board Venus Express. Journal of Geophysical Research, 2008, 113, .	3.3	117
18	Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season. Science, 2020, 367, 297-300.	12.6	117

#	Article	IF	CITATIONS
19	Subvisible CO2 ice clouds detected in the mesosphere of Mars. Icarus, 2006, 183, 403-410.	2.5	113
20	Water vapor in the middle atmosphere of Mars during the 2007 global dust storm. Icarus, 2018, 300, 440-457.	2.5	111
21	No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 2019, 568, 517-520.	27.8	111
22	Compact high-resolution spaceborne echelle grating spectrometer with acousto-optical tunable filter based order sorting for the infrared domain from 22 to 43 1¼m. Applied Optics, 2006, 45, 5191.	2.1	108
23	Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 2019, 568, 521-525.	27.8	107
24	Vertical profiling of SO2 and SO above Venus' clouds by SPICAV/SOIR solar occultations. Icarus, 2012, 217, 740-751.	2.5	103
25	Solar infrared occultation observations by SPICAM experiment on Mars-Express: Simultaneous measurements of the vertical distributions of H2O, CO2 and aerosol. Icarus, 2009, 200, 96-117.	2.5	98
26	Stellar occultations observed by SPICAM on Mars Express. Journal of Geophysical Research, 2006, 111, .	3.3	97
27	The 1.10- and 1.18-μm nightside windows of Venus observed by SPICAV-IR aboard Venus Express. Icarus, 2011, 216, 173-183.	2.5	96
28	Stellar occultations at UV wavelengths by the SPICAM instrument: Retrieval and analysis of Martian haze profiles. Journal of Geophysical Research, 2006, 111, .	3.3	93
29	Mars' water vapor mapping by the SPICAM IR spectrometer: Five martian years of observations. Icarus, 2015, 251, 50-64.	2.5	90
30	SPICAM IR acousto-optic spectrometer experiment on Mars Express. Journal of Geophysical Research, 2006, 111, .	3.3	89
31	Composition of the Venus mesosphere measured by Solar Occultation at Infrared on board Venus Express. Journal of Geophysical Research, 2008, 113, .	3.3	86
32	Evidence for a bimodal size distribution for the suspended aerosol particles on Mars. Icarus, 2014, 231, 239-260.	2.5	82
33	Preliminary characterization of the upper haze by SPICAV/SOIR solar occultation in UV to midâ€IR onboard Venus Express. Journal of Geophysical Research, 2009, 114, .	3.3	81
34	A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus, 2011, 216, 82-85.	2.5	81
35	Near infrared diode laser spectroscopy of C2H2, H2O, CO2 andÂtheir isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission. Applied Physics B: Lasers and Optics, 2010, 99, 339-351.	2.2	78
36	Mars water vapor abundance from SPICAM IR spectrometer: Seasonal and geographic distributions. Journal of Geophysical Research, 2006, 111, .	3.3	76

#	Article	IF	CITATIONS
37	Vertical structure and size distributions of Martian aerosols from solar occultation measurements. Icarus, 1992, 97, 46-69.	2.5	72
38	Investigating Mercury's Environment with the Two-Spacecraft BepiColombo Mission. Space Science Reviews, 2020, 216, 1.	8.1	71
39	Variations of water vapor and cloud top altitude in the Venus' mesosphere from SPICAV/VEx observations. Icarus, 2016, 275, 143-162.	2.5	67
40	First results on GOMOS/ENVISAT. Advances in Space Research, 2004, 33, 1029-1035.	2.6	66
41	Vertical Distribution of Water in the Near-Equatorial Troposphere of Mars: Water Vapor and Clouds. Icarus, 1997, 125, 212-229.	2.5	65
42	SPICAM on Mars Express: A 10 year in-depth survey of the Martian atmosphere. Icarus, 2017, 297, 195-216.	2.5	64
43	The study of the martian atmosphere from top to bottom with SPICAM light on mars express. Planetary and Space Science, 2000, 48, 1303-1320.	1.7	61
44	Infrared Spectrometer for ExoMars: A Mast-Mounted Instrument for the Rover. Astrobiology, 2017, 17, 542-564.	3.0	61
45	Post-Phobos model for the altitude and size distribution of dust in the low Martian atmosphere. Journal of Geophysical Research, 1995, 100, 5525.	3.3	60
46	Observation of O21.27 μm dayglow by SPICAM IR: Seasonal distribution for the first Martian year of Mars Express. Journal of Geophysical Research, 2006, 111, .	3.3	57
47	Planetary Magnetic Dynamo Effect on Atmospheric Protection of Early Earth and Mars. Space Science Reviews, 2007, 129, 279-300.	8.1	53
48	Aerosol properties in the upper haze of Venus from SPICAV IR data. Icarus, 2016, 277, 154-170.	2.5	53
49	Sulfur dioxide in the Venus Atmosphere: II. Spatial and temporal variability. Icarus, 2017, 295, 1-15.	2.5	53
50	Acousto-optic tunable filter spectrometers in space missions [Invited]. Applied Optics, 2018, 57, C103.	1.8	52
51	In-flight performance and calibration of SPICAV SOIR onboard Venus Express. Applied Optics, 2008, 47, 2252.	2.1	50
52	First observations of SO ₂ above Venus' clouds by means of Solar Occultation in the Infrared. Journal of Geophysical Research, 2008, 113, .	3.3	50
53	Viking observation of water vapor on Mars: Revision from up-to-date spectroscopy and atmospheric models. Icarus, 2010, 208, 156-164.	2.5	50
54	Climatology of SO2 and UV absorber at Venus' cloud top from SPICAV-UV nadir dataset. Icarus, 2020, 335, 113368.	2.5	50

#	Article	IF	CITATIONS
55	SPICAV IR acousto-optic spectrometer experiment on Venus Express. Planetary and Space Science, 2012, 65, 38-57.	1.7	49
56	Venus Express: Scientific goals, instrumentation, and scenario of the mission. Cosmic Research, 2006, 44, 334-348.	0.6	48
57	Sulfur dioxide in the Venus atmosphere: I. Vertical distribution and variability. Icarus, 2017, 295, 16-33.	2.5	47
58	The O2 nightglow in the martian atmosphere by SPICAM onboard of Mars-Express. Icarus, 2012, 219, 596-608.	2.5	45
59	The Close-Up Imager Onboard the ESA ExoMars Rover: Objectives, Description, Operations, and Science Validation Activities. Astrobiology, 2017, 17, 595-611.	3.0	44
60	PHEBUS: A double ultraviolet spectrometer to observe Mercury's exosphere. Planetary and Space Science, 2010, 58, 201-223.	1.7	42
61	Martian water loss to space enhanced by regional dust storms. Nature Astronomy, 2021, 5, 1036-1042.	10.1	40
62	An AOTF-based spectrometer for the studies of Mars atmosphere for Mars Express ESA mission. Advances in Space Research, 2002, 29, 143-150.	2.6	37
63	Thermal structure of Venus nightside upper atmosphere measured by stellar occultations with SPICAV/Venus Express. Planetary and Space Science, 2015, 113-114, 321-335.	1.7	37
64	Transient HCl in the atmosphere of Mars. Science Advances, 2021, 7, .	10.3	37
65	Tentative identification of formaldehyde in the Martian atmosphere. Planetary and Space Science, 1993, 41, 441-451.	1.7	36
66	Optical properties of dust and the opacity of the Martian atmosphere. Advances in Space Research, 2005, 35, 21-30.	2.6	33
67	TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere. Advances in Space Research, 2006, 38, 718-725.	2.6	33
68	Wide-aperture TeO2 AOTF at low temperatures: Operation and survival. Ultrasonics, 2015, 59, 50-58.	3.9	33
69	Three infrared spectrometers, an atmospheric chemistry suite for the ExoMars 2016 trace gas orbiter. Journal of Applied Remote Sensing, 2014, 8, 084983.	1.3	32
70	Multiâ€Annual Monitoring of the Water Vapor Vertical Distribution on Mars by SPICAM on Mars Express. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	32
71	Dust and cloud detection at the Mars limb with UV scattered sunlight with SPICAM. Journal of Geophysical Research, 2006, 111, .	3.3	31
72	O2(a1î"g) dayglow limb observations on Mars by SPICAM IR on Mars-Express and connection to water vapor distribution. Icarus, 2014, 239, 131-140.	2.5	31

#	Article	IF	CITATIONS
73	Preliminary study of Venus cloud layers with polarimetric data from SPICAV/VEx. Planetary and Space Science, 2015, 113-114, 159-168.	1.7	30
74	The vertical structure of CO in the Martian atmosphere from the ExoMars Trace Gas Orbiter. Nature Geoscience, 2021, 14, 67-71.	12.9	30
75	Long-term nadir observations of the O2 dayglow by SPICAM IR. Planetary and Space Science, 2016, 122, 1-12.	1.7	29
76	Infrared solar occultation sounding of the Martian atmosphere by the Phobos spacecraft. Icarus, 1991, 94, 32-44.	2.5	28
77	Diode laser spectroscopy of H2O and CO2 in the 1.877-μm region for the in situ monitoring of the Martian atmosphere. Applied Physics B: Lasers and Optics, 2006, 82, 133-140.	2.2	28
78	Line parameters for the 01111–00001 band of 12C16O18O from SOIR measurements of the Venus atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109, 895-905.	2.3	28
79	yThe Mercury sodium atmospheric spectral imager for the MMO spacecraft of Bepi-Colombo. Planetary and Space Science, 2010, 58, 224-237.	1.7	28
80	Mio—First Comprehensive Exploration of Mercury's Space Environment: Mission Overview. Space Science Reviews, 2020, 216, 1.	8.1	28
81	Properties of Water Ice and Dust Particles in the Atmosphere of Mars During the 2018 Global Dust Storm as Inferred From the Atmospheric Chemistry Suite. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006419.	3.6	28
82	Martian Water Ice Clouds During the 2018 Global Dust Storm as Observed by the ACSâ€MIR Channel Onboard the Trace Gas Orbiter. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006300.	3.6	27
83	Isotopic fractionation of water and its photolytic products in the atmosphere of Mars. Nature Astronomy, 2021, 5, 943-950.	10.1	27
84	First observation of the magnetic dipole CO ₂ absorption band at 3.3 <i>μ</i> m in the atmosphere of Mars by the ExoMars Trace Gas Orbiter ACS instrument. Astronomy and Astrophysics, 2020, 639, A142.	5.1	25
85	Venus express: Highlights of the nominal mission. Solar System Research, 2009, 43, 185-209.	0.7	24
86	Oxygen isotopic ratios in Martian water vapour observed by ACS MIR on board the ExoMars Trace Gas Orbiter. Astronomy and Astrophysics, 2019, 630, A91.	5.1	24
87	Revealing a High Water Abundance in the Upper Mesosphere of Mars With ACS Onboard TGO. Geophysical Research Letters, 2021, 48, e2021GL093411.	4.0	24
88	Title is missing!. Solar System Research, 2003, 37, 1-19.	0.7	23
89	The CO2 continuum absorption in the 1.10- and 1.18-μm windows on Venus from Maxwell Montes transits by SPICAV IR onboard Venus express. Planetary and Space Science, 2015, 113-114, 66-77.	1.7	23
90	Scientific objectives of the scientific equipment of the landing platform of the ExoMars-2018 mission. Solar System Research, 2015, 49, 509-517.	0.7	23

#	Article	IF	CITATIONS
91	Compact acousto-optic imaging spectro-polarimeter for mineralogical investigations in the near infrared. Optics Express, 2017, 25, 25980.	3.4	23
92	First detection of ozone in the mid-infrared at Mars: implications for methane detection. Astronomy and Astrophysics, 2020, 639, A141.	5.1	23
93	First observation of 628 CO2 isotopologue band at 3.3 μm in the atmosphere of Venus by solar occultation from Venus Express. Icarus, 2008, 195, 28-33.	2.5	22
94	Superrotation in Planetary Atmospheres. Space Science Reviews, 2020, 216, 1.	8.1	22
95	Gravity Wave Activity in the Martian Atmosphere at Altitudes 20–160Âkm From ACS/TGO Occultation Measurements. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006899.	3.6	22
96	PHEBUS on Bepi-Colombo: Post-launch Update and Instrument Performance. Space Science Reviews, 2020, 216, 1.	8.1	21
97	Solar occultation spectroscopic measurements of the martian atmosphere at 1.9 and 3.7 \hat{l}_{4} m. Nature, 1989, 341, 603-604.	27.8	20
98	Occultation of stars in the UV: Study of the atmosphere of Mars. Journal of Geophysical Research, 2001, 106, 7597-7610.	3.3	19
99	ACS experiment for atmospheric studies on "ExoMars-2016―Orbiter. Solar System Research, 2015, 49, 529-537.	0.7	19
100	Discovery of cloud top ozone on Venus. Icarus, 2019, 319, 491-498.	2.5	19
101	Relationship Between the Ozone and Water Vapor Columns on Mars as Observed by SPICAM and Calculated by a Global Climate Model. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006838.	3.6	19
102	AOTF-based spectrometer for Mars atmosphere sounding. , 2002, , .		18
103	The RUSALKA device for measuring the carbon dioxide and methane concentration in the atmosphere from on board the International Space Station. Journal of Optical Technology (A Translation of) Tj ETQq1 1 0.784	-3 1 :44gBT	/Overlock 10
104	Compact echelle spectrometer for occultation sounding of the Martian atmosphere: design and performance. Applied Optics, 2013, 52, 1054.	1.8	17
105	Seasonal reappearance of HCl in the atmosphere of Mars during the Mars year 35 dusty season. Astronomy and Astrophysics, 2021, 647, A161.	5.1	17
106	European Venus Explorer: An in-situ mission to Venus using a balloon platform. Advances in Space Research, 2009, 44, 106-115.	2.6	16
107	A stringent upper limit of 20 pptv for methane on Mars and constraints on its dispersion outside Gale crater. Astronomy and Astrophysics, 0, , .	5.1	16
108	Compact high-resolution IR spectrometer for atmospheric studies. , 2002, , .		15

#	Article	IF	CITATIONS
109	Contribution from SOIR/VEX to the updated Venus International Reference Atmosphere (VIRA). Advances in Space Research, 2016, 57, 443-458.	2.6	15
110	Annual Appearance of Hydrogen Chloride on Mars and a Striking Similarity With the Water Vapor Vertical Distribution Observed by TGO/NOMAD. Geophysical Research Letters, 2021, 48, e2021GL092506.	4.0	15
111	Triple F—a comet nucleus sample return mission. Experimental Astronomy, 2009, 23, 809-847.	3.7	14
112	Examination of Temperature Influence on Wide-Angle Paratellurite Crystal Acousto-Optic Filters Operation. Acta Physica Polonica A, 2015, 127, 43-45.	0.5	14
113	Searching for Traces of Life With the ExoMars Rover. , 2018, , 309-347.		14
114	Title is missing!. Solar System Research, 2002, 36, 12-34.	0.7	13
115	Characterization of the stray light in a space borne atmospheric AOTF spectrometer. Optics Express, 2013, 21, 18354.	3.4	13
116	Investigations of the Mars Upper Atmosphere with ExoMars Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	8.1	13
117	Observation of Mercury's sodium exosphere by MSASI in the BepiColombo mission. Planetary and Space Science, 2007, 55, 1622-1633.	1.7	12
118	The Effect of the Martian 2018 Global Dust Storm on HDO as Predicted by a Mars Global Climate Model. Geophysical Research Letters, 2021, 48, e2020GL090962.	4.0	12
119	Isotopic Composition of CO ₂ in the Atmosphere of Mars: Fractionation by Diffusive Separation Observed by the ExoMars Trace Gas Orbiter. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	12
120	Europa Lander mission and the context of international cooperation. Advances in Space Research, 2011, 48, 615-628.	2.6	11
121	AOST: Fourier spectrometer for studying mars and phobos. Solar System Research, 2012, 46, 31-40.	0.7	11
122	Development of a mast or robotic arm-mounted infrared AOTF spectrometer for surface Moon and Mars probes. Proceedings of SPIE, 2015, , .	0.8	11
123	The nature of terrains of different types on the surface of Venus and selection of potential landing sites for a descent probe of the Venera-D Mission. Solar System Research, 2017, 51, 1-19.	0.7	11
124	Common-path achromatic rotational-shearing coronagraph. Optics Letters, 2011, 36, 1972.	3.3	10
125	High-Resolution Fiber-Fed Spectrograph for the 6-m Telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences: Assessment of Efficiency. Astrophysical Bulletin, 2020, 75, 191-197.	1.3	10
126	Thermal Tides in the Martian Atmosphere Near Northern Summer Solstice Observed by ACS/TIRVIM Onboard TGO. Geophysical Research Letters, 2022, 49, .	4.0	10

#	Article	IF	CITATIONS
127	European Venus Explorer (EVE): an in-situ mission to Venus. Experimental Astronomy, 2009, 23, 741-760.	3.7	9
128	Thermal Structure and Aerosols in Mars' Atmosphere From TIRVIM/ACS Onboard the ExoMars Trace Gas Orbiter: Validation of the Retrieval Algorithm. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	9
129	Global structure and composition of the martian atmosphere with SPICAM on Mars express. Advances in Space Research, 2005, 35, 31-36.	2.6	8
130	Prospective spacecraft for venus research: Venera-D design. Solar System Research, 2011, 45, 710-714.	0.7	8
131	MEP (Mars Environment Package): toward a package for studying environmental conditions at the surface of Mars from future lander/rover missions. Advances in Space Research, 2004, 34, 1702-1709.	2.6	7
132	Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR. Cosmic Research, 2006, 44, 278-293.	0.6	7
133	Methods and measurements to assess physical and geochemical conditions at the surface of Europa. Advances in Space Research, 2011, 48, 702-717.	2.6	7
134	Scale heights and detached haze layers in the mesosphere of Venus from SPICAV IR data. Icarus, 2018, 311, 87-104.	2.5	7
135	Validation of the HITRAN 2016 and GEISA 2015 line lists using ACE-FTS solar occultation observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 236, 106590.	2.3	7
136	Isotopes of chlorine from HCl in the Martian atmosphere. Astronomy and Astrophysics, 2021, 651, A32.	5.1	7
137	Four micron infrared observations of the comet Shoemaker-Levy 9 collision with Jupiter at the Zelenchuk Observatory: Spectral evidence for a stratospheric haze and determination of its physical properties. Geophysical Research Letters, 1995, 22, 1585-1588.	4.0	6
138	The Lavoisier mission : A system of descent probe and balloon flotilla for geochemical investigation of the deep atmosphere and surface of Venus. Advances in Space Research, 2002, 29, 255-264.	2.6	6
139	Development of a space-borne spectrometer to monitor atmospheric ozone. Applied Optics, 2015, 54, 3315.	2.1	6
140	The MetNet vehicle: a lander to deploy environmental stations for local and global investigations of Mars. Geoscientific Instrumentation, Methods and Data Systems, 2017, 6, 103-124.	1.6	6
141	The Distribution of Giant Exoplanets over True and Projective Masses: Accounting for Observational Selection. Solar System Research, 2019, 53, 124-137.	0.7	6
142	The Spatial and Temporal Distribution of Nighttime Ozone and Sulfur Dioxide in the Venus Mesosphere as Deduced From SPICAV UV Stellar Occultations. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006625.	3.6	6
143	Stellar imaging coronagraph and exoplanet coronal spectrometer: two additional instruments for exoplanet exploration onboard the WSO-UV 1.7-m orbital telescope. Journal of Astronomical Telescopes, Instruments, and Systems, 2018, 4, 1.	1.8	6
144	WSO–UV Project: New Touches. Solar System Research, 2021, 55, 677-687.	0.7	6

4

#	Article	IF	CITATIONS
145	SPICAM-light on Mars-Express as a monitor of surface UV radiation and atmospheric oxidants. Planetary and Space Science, 2001, 49, 165-171.	1.7	5

146 The AOST miniature Fourier spectrometer for space studies. Journal of Optical Technology (A) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702

147	Near-infrared echelle-AOTF spectrometer ACS-NIR for the ExoMars Trace Gas Orbiter. Proceedings of SPIE, 2015, , .	0.8	5
148	Fourier transform spectrometers for remote sensing of planetary atmospheres and surfaces. CEAS Space Journal, 2017, 9, 399-409.	2.3	5
149	The Mass Distribution of Transiting Exoplanets Corrected for Observational Selection Effects. Astronomy Letters, 2019, 45, 687-694.	1.0	5
150	Water Vapor on Mars: A Refined Climatology and Constraints on the Near‧urface Concentration Enabled by Synergistic Retrievals. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	5
151	Reappraising the Production and Transfer of Hydrogen Atoms From the Middle to the Upper Atmosphere of Mars at Times of Elevated Water Vapor. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	5
152	Improved Modeling of Mars' HDO Cycle Using a Mars' Global Climate Model. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	5
153	Ozone vertical distribution in Mars Years 27–30 from SPICAM/MEX UV occultations. Icarus, 2022, 387, 115162.	2.5	5
154	Exploration of Mars in the SPICAM-IR experiment onboard the Mars-Express spacecraft: 2. Nadir observations: Simultaneous observations of water vapor and O2 glow in the Martian atmosphere. Cosmic Research, 2006, 44, 294-304.	0.6	4
155	Europa Lander Mission: A Challenge to Find Traces of Alien Life. Proceedings of the International Astronomical Union, 2010, 6, 115-129.	0.0	4
156	Middle-infrared echelle cross-dispersion spectrometer ACS-MIR for the ExoMars Trace Gas Orbiter. Proceedings of SPIE, 2015, , .	0.8	4
157	Studies of planetary atmospheres in Russia (2011–2014). Izvestiya - Atmospheric and Oceanic Physics, 2016, 52, 483-496.	0.9	4
158	Estimates of abundance of the short-baseline (1-3 meters) slopes for different Venusian terrains using terrestrial analogues. Solar System Research, 2017, 51, 87-103.	0.7	4
159	Improved calibrations of the stellar occultation data accumulated by the SPICAV UV onboard Venus Express. Planetary and Space Science, 2020, 184, 104868.	1.7	4
160	Mass distribution of exoplanets considering some observation selection effects in the transit detection technique. Icarus, 2020, 346, 113773.	2.5	4
161	Upper limits for phosphine (PH ₃) in the atmosphere of Mars. Astronomy and Astrophysics, 2021, 649, L1.	5.1	4

162 ACS/TIRVIM: Calibration and first results. , 2018, , .

#	Article	IF	CITATIONS
163	Seasonal Changes in the Vertical Structure of Ozone in the Martian Lower Atmosphere and Its Relationship to Water Vapor. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	4
164	The HDO Cycle on Mars: Comparison of ACS Observations With GCM Simulations. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	4
165	Study of the atmospheres of the terrestrial planets. Physics-Uspekhi, 2005, 48, 626-635.	2.2	3
166	Introduction: A Multidisciplinary Approach to Habitability. Space Science Reviews, 2007, 129, 1-5.	8.1	3
167	The AOST miniature Fourier spectrometer for space studies. Journal of Optical Technology (A) Tj ETQq1 1 0.7845	814 rgBT , 0.4	Ovgrlock 10
168	Studies of the planetary atmospheres in Russia (2007–2010). Izvestiya - Atmospheric and Oceanic Physics, 2012, 48, 309-331.	0.9	3
169	Public "Cloud―Provisioning for Venus Express VMC Image Processing. Communications on Applied Mathematics and Computation, 2019, 1, 253-261.	1.7	3
170	Martian Multichannel Diode Laser Spectrometer (M-DLS) for In-Situ Atmospheric Composition Measurements on Mars Onboard ExoMars-2022 Landing Platform. Applied Sciences (Switzerland), 2020, 10, 8805.	2.5	3
171	The Dependence of the Mass Distribution of Exoplanets on the Spectral Class of Host Stars. Solar System Research, 2020, 54, 175-186.	0.7	3
172	Observations of Radial Velocity Variability in Stars from the Spectra Obtained with the BTA Fiber-Fed Spectrograph in High Spectral Resolution Mode. Astrophysical Bulletin, 2020, 75, 482-485.	1.3	3
173	Studies of Planetary Atmospheres by Stellar Occultations: Application to Mars and Venus. Solar System Research, 2003, 37, 441-468.	0.7	2
174	Introduction to Chapter 6: Planetary/Sun Interactions. Space Science Reviews, 2007, 129, 205-206.	8.1	2
175	Attempt to identify a source mechanism of Mercury's sodium exosphere by a spectrometer using Fabry–Perot etalon. Advances in Space Research, 2008, 42, 1172-1179.	2.6	2
176	New in the physics of planetary atmosphere. Izvestiya - Atmospheric and Oceanic Physics, 2009, 45, 503-516.	0.9	2
177	Atmospheric chemistry suite (ACS): a set of infrared spectrometers for atmospheric measurements on board ExoMars trace gas orbiter. , 2013, , .		2
178	Achromatic interfero-coronagraph with variable rotation shearing for studying extrasolar planets. Solar System Research, 2013, 47, 477-486.	0.7	2
179	Studies of Planetary Atmospheres in Russia (2015–2018). Izvestiya - Atmospheric and Oceanic Physics, 2020, 56, 130-140.	0.9	2
180	Acousto-optic infrared imaging spectrometer for close-up sensing of planetary surfaces. , 2018, , .		2

#	Article	IF	CITATIONS
181	Space-based spectroscopy of Mars: new methods and new results. Physics-Uspekhi, 2013, 56, 722-729.	2.2	2
182	Lunar Infrared Spectrometer with TV Support of the Robotic Arm Working Zone (LIS-TV-RPM). Solar System Research, 2021, 55, 537-549.	0.7	2
183	A study of the bound water, water ice, and frost distribution over the Martian surface: Treatment and correcting of the data of observations with the OMEGA spectrometer onboard Mars Express. Solar System Research, 2009, 43, 373-391.	0.7	1
184	Microscope spectrometer for the Phobos-Grunt mission. Solar System Research, 2010, 44, 403-408.	0.7	1
185	Stellar coronagraph using the principle of achromatic null-interferometer. Cosmic Research, 2011, 49, 99-109.	0.6	1
186	High-resolution infrared detector and its electronic unit for space application. Proceedings of SPIE, 2015, , .	0.8	1
187	Ground-Based Field Measurements and Calibrations of a New Satellite Spectrometer for Monitoring the Earth's Ozone Layer. Izvestiya - Atmospheric and Oceanic Physics, 2018, 54, 1399-1407.	0.9	1
188	High resolution middle infrared spectrometer, a part of atmospheric chemistry suite (ACS) for EXOMARS 2016 trace gas orbiter. , 2017, , .		1
189	No detection of SO ₂ , H ₂ S, or OCS in the atmosphere of Mars from the first two Martian years of observations from TGO/ACS. Astronomy and Astrophysics, 2022, 658, A86.	5.1	1
190	Identification of planetary wave patterns associated with ice seasonal sublimation/condensation dynamics in the polar regions of mars, based on IR mapping spectrometer OMEGA onboard Mars Express. Cosmic Research, 2010, 48, 150-156.	0.6	0
191	Advances in astronomy (Scientific session of the Physical Sciences Division of the Russian Academy of) Tj ETQq1	1	14 رgBT /Ove
192	Mars and Venus: Different destinies of terrestrial planets. Herald of the Russian Academy of Sciences, 2016, 86, 285-297.	0.6	0
193	Optical design of imaging spectrometer for atmosphere monitoring from near-Earth orbit. , 2018, , .		0
194	Optical design and modeling of satellite imaging spectrometer for atmosphere monitoring. , 2019, , .		0
195	Interferometer with single-axis robot: design, alignment and performance. , 2019, , .		0
196	Compact calibration source for thermal infrared Fourier-transform spectrometer. , 2019, , .		0
197	Two-coordinate pointing and tracking system for an infrared Fourier-transform spectrometer. , 2019, ,		0