Ali Farajpour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7714601/publications.pdf

Version: 2024-02-01

59 papers	2,735 citations	136950 32 h-index	189892 50 g-index
59	59	59	962
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Special issue of Engineering Analysis with Boundary Elements: Computational approaches to mechanical response analysis of structures at diverse scales. Engineering Analysis With Boundary Elements, 2022, 136, 1-2.	3.7	O
2	Special Issue of Nanomaterials: Mechanics of Nanostructures and Nanomaterials. Nanomaterials, 2022, 12, 476.	4.1	2
3	Analytical and meshless DQM approaches to free vibration analysis of symmetric FGM porous nanobeams with piezoelectric effect. Engineering Analysis With Boundary Elements, 2022, 136, 266-289.	3.7	44
4	Nonlinear frequency behaviour of magneto-electromechanical mass nanosensors using vibrating MEE nanoplates with multiple nanoparticles. Composite Structures, 2021, 260, 113458.	5.8	28
5	Nonlinear coupled mechanics of nanotubes incorporating both nonlocal and strain gradient effects. Mechanics of Advanced Materials and Structures, 2020, 27, 373-382.	2.6	29
6	Viscoelastically coupled in-plane and transverse dynamics of imperfect microplates. Thin-Walled Structures, 2020, 150, 106117.	5.3	28
7	Large-amplitude parametric response of fluid-conveying nanotubes due to flow pulsations. Microsystem Technologies, 2020, 26, 707-720.	2.0	5
8	Effect of flow pulsations on chaos in nanotubes using nonlocal strain gradient theory. Communications in Nonlinear Science and Numerical Simulation, 2020, 83, 105090.	3.3	24
9	Local dynamic analysis of imperfect fluid-conveying nanotubes with large deformations incorporating nonlinear damping. JVC/Journal of Vibration and Control, 2020, 26, 413-429.	2.6	6
10	Wave Dispersion in Multilayered Reinforced Nonlocal Plates under Nonlinearly Varying Initial Stress. Eng, 2020, 1, 31-47.	2.4	0
11	On size-dependent mechanics of nanoplates. International Journal of Engineering Science, 2020, 156, 103368.	5.0	40
12	Asymmetric Oscillations of AFG Microscale Nonuniform Deformable Timoshenko Beams. Vibration, 2019, 2, 201-221.	1.9	1
13	Viscoelastically coupled mechanics of fluid-conveying microtubes. International Journal of Engineering Science, 2019, 145, 103139.	5.0	36
14	Global nonlocal viscoelastic dynamics of pulsatile fluid-conveying imperfect nanotubes. European Physical Journal Plus, 2019, 134, 1.	2.6	7
15	Nonlocal nonlinear mechanics of imperfect carbon nanotubes. International Journal of Engineering Science, 2019, 142, 201-215.	5.0	25
16	Chaos in fluid-conveying NSGT nanotubes with geometric imperfections. Applied Mathematical Modelling, 2019, 74, 708-730.	4.2	32
17	Pulsatile vibrations of viscoelastic microtubes conveying fluid. Microsystem Technologies, 2019, 25, 3609-3623.	2.0	7
18	Super and subcritical nonlinear nonlocal analysis of NSGT nanotubes conveying nanofluid. Microsystem Technologies, 2019, 25, 4693-4707.	2.0	5

#	Article	IF	CITATIONS
19	A coupled longitudinal-transverse nonlinear NSGT model for CNTs incorporating internal energy loss. European Physical Journal Plus, 2019, 134, 1.	2.6	12
20	A nonlinear viscoelastic model for NSGT nanotubes conveying fluid incorporating slip boundary conditions. JVC/Journal of Vibration and Control, 2019, 25, 1883-1894.	2.6	7
21	Mechanics of Fluid-Conveying Microtubes: Coupled Buckling and Post-Buckling. Vibration, 2019, 2, 102-115.	1.9	6
22	A coupled nonlinear continuum model for bifurcation behaviour of fluid-conveying nanotubes incorporating internal energy loss. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	15
23	Application of nanotubes in conveying nanofluid: a bifurcation analysis with consideration of internal energy loss and geometrical imperfection. Microsystem Technologies, 2019, 25, 4357-4371.	2.0	8
24	Vibrations of shear deformable FG viscoelastic microbeams. Microsystem Technologies, 2019, 25, 1387-1400.	2.0	16
25	Global dynamics of fluid conveying nanotubes. International Journal of Engineering Science, 2019, 135, 37-57.	5.0	64
26	Chaotic motion analysis of fluid-conveying viscoelastic nanotubes. European Journal of Mechanics, A/Solids, 2019, 74, 281-296.	3.7	54
27	A review on the mechanics of functionally graded nanoscale and microscale structures. International Journal of Engineering Science, 2019, 137, 8-36.	5.0	210
28	Large-amplitude coupled scale-dependent behaviour of geometrically imperfect NSGT nanotubes. International Journal of Mechanical Sciences, 2019, 150, 510-525.	6.7	43
29	A nonlocal continuum model for the biaxial buckling analysis of composite nanoplates with shape memory alloy nanowires. Materials Research Express, 2018, 5, 035026.	1.6	33
30	Nonlinear mechanics of nanoscale tubes via nonlocal strain gradient theory. International Journal of Engineering Science, 2018, 129, 84-95.	5.0	101
31	Nonlinear mechanics of nanotubes conveying fluid. International Journal of Engineering Science, 2018, 133, 132-143.	5.0	77
32	A review on the mechanics of nanostructures. International Journal of Engineering Science, 2018, 133, 231-263.	5.0	179
33	Resonant frequency tuning of nanobeams by piezoelectric nanowires under thermoâ€electroâ€magnetic field: a theoretical study. Micro and Nano Letters, 2018, 13, 1627-1632.	1.3	17
34	Chaotic oscillations of viscoelastic microtubes conveying pulsatile fluid. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	27
35	Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment. Physica B: Condensed Matter, 2017, 509, 100-114.	2.7	53
36	Size-dependent static stability of magneto-electro-elastic CNT/MT-based composite nanoshells under external electric and magnetic fields. Microsystem Technologies, 2017, 23, 5815-5832.	2.0	17

3

#	Article	IF	Citations
37	Nonlinear buckling analysis of magneto-electro-elastic CNT-MT hybrid nanoshells based on the nonlocal continuum mechanics. Composite Structures, 2017, 180, 179-191.	5.8	65
38	Vibration of piezoelectric nanofilmâ€based electromechanical sensors via higherâ€order nonâ€local strain gradient theory. Micro and Nano Letters, 2016, 11, 302-307.	1.3	47
39	Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment. Acta Mechanica, 2016, 227, 2207-2232.	2.1	68
40	A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment. Acta Mechanica, 2016, 227, 1849-1867.	2.1	145
41	Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates. Composite Structures, 2016, 140, 323-336.	5.8	144
42	Numerical study of twin groove journal bearings performance under steady-state condition. Lubrication Science, 2015, 27, 83-102.	2.1	9
43	Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 68, 112-122.	2.7	49
44	Thermal effects on the stability of circular graphene sheets via nonlocal continuum mechanics. Latin American Journal of Solids and Structures, 2014, 11, 704-724.	1.0	37
45	Decoupling the nonlocal elasticity equations for thermo-mechanical vibration of circular graphene sheets including surface effects. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 60, 80-90.	2.7	41
46	Thermo-electro-mechanical vibration of coupled piezoelectric-nanoplate systems under non-uniform voltage distribution embedded in Pasternak elastic medium. Current Applied Physics, 2014, 14, 814-832.	2.4	47
47	Surface effects on the mechanical characteristics of microtubule networks in living cells. Mechanics Research Communications, 2014, 57, 18-26.	1.8	43
48	Vibration characteristics of doubleâ€piezoelectricâ€nanoplateâ€systems. Micro and Nano Letters, 2014, 9, 280-285.	1.3	37
49	Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 63, 169-179.	2.7	49
50	Numerical study of the effect of shear in-plane load on the vibration analysis of graphene sheet embedded in an elastic medium. Computational Materials Science, 2014, 82, 510-520.	3.0	24
51	Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory. Composite Structures, 2014, 116, 703-712.	5.8	72
52	Exact solution for thermo-mechanical vibration of orthotropic mono-layer graphene sheet embedded in an elastic medium. Latin American Journal of Solids and Structures, 2014, 11, 437-458.	1.0	33
53	Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 47, 197-206.	2.7	59
54	Axisymmetric free and forced vibrations of initially stressed circular nanoplates embedded in an elastic medium. Acta Mechanica, 2012, 223, 2311-2330.	2.1	41

Ali Farajpour

#	Article	IF	CITATIONS
55	Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics. Composite Structures, 2012, 94, 1605-1615.	5.8	122
56	Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method. Mechanics Research Communications, 2012, 39, 23-27.	1.8	145
57	Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 44, 719-727.	2.7	77
58	Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 44, 135-140.	2.7	33
59	Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1820-1825.	2.7	90