
## Luce Fleitout

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7714422/publications.pdf Version: 2024-02-01



LUCE FLEITOUT

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Understanding the Geodetic Signature of Large Aquifer Systems: Example of the Ozark Plateaus in<br>Central United States. Journal of Geophysical Research: Solid Earth, 2022, 127, .                                                     | 1.4  | 9         |
| 2  | Data-adaptive spatio-temporal filtering of GRACE data. Geophysical Journal International, 2019, 219, 2034-2055.                                                                                                                          | 1.0  | 15        |
| 3  | Toward a Global Horizontal and Vertical Elastic Load Deformation Model Derived from GRACE and<br>GNSS Station Position Time Series. Journal of Geophysical Research: Solid Earth, 2018, 123, 3225-3237.                                  | 1.4  | 68        |
| 4  | Constraints on Transient Viscoelastic Rheology of the Asthenosphere From Seasonal Deformation.<br>Geophysical Research Letters, 2018, 45, 2328-2338.                                                                                     | 1.5  | 24        |
| 5  | A comprehensive analysis of the Illapel 2015 Mw8.3 earthquake from GPS and InSAR data. Earth and<br>Planetary Science Letters, 2017, 469, 123-134.                                                                                       | 1.8  | 45        |
| 6  | Inverting Glacial Isostatic Adjustment signal using Bayesian framework and two linearly relaxing rheologies. Geophysical Journal International, 2017, 209, 1126-1147.                                                                    | 1.0  | 31        |
| 7  | Evidence for postglacial signatures in gravity gradients: A clue in lower mantle viscosity. Earth and<br>Planetary Science Letters, 2016, 452, 146-156.                                                                                  | 1.8  | 11        |
| 8  | The Seismic Sequence of the 16 September 2015 <i>M</i> <sub>w</sub> Â8.3 Illapel, Chile, Earthquake.<br>Seismological Research Letters, 2016, 87, 789-799.                                                                               | 0.8  | 71        |
| 9  | Evidence for the release of longâ€ŧerm tectonic strain stored in continental interiors through<br>intraplate earthquakes. Geophysical Research Letters, 2016, 43, 6826-6836.                                                             | 1.5  | 62        |
| 10 | Afterslip and viscoelastic relaxation model inferred from the large-scale post-seismic deformation<br>following the 2010 <i>M</i> <sub>w</sub> 8.8 Maule earthquake (Chile). Geophysical Journal<br>International, 2016, 205, 1455-1472. | 1.0  | 95        |
| 11 | Interpretation of interseismic deformations and the seismic cycle associated with large subduction earthquakes. Tectonophysics, 2013, 589, 126-141.                                                                                      | 0.9  | 42        |
| 12 | Vertical motions in Thailand after the 2004 Sumatra–Andaman Earthquake from GPS observations and<br>its geophysical modelling. Advances in Space Research, 2013, 51, 1565-1571.                                                          | 1.2  | 18        |
| 13 | April 2012 intra-oceanic seismicity off Sumatra boosted by the Banda-Aceh megathrust. Nature, 2012, 490, 240-244.                                                                                                                        | 13.7 | 97        |
| 14 | Effect of lateral viscosity variations in the core-mantle boundary region on predictions of the long-wavelength geoid. Studia Geophysica Et Geodaetica, 2006, 50, 217-232.                                                               | 0.3  | 38        |
| 15 | Linear Stability of a Double Diffusive Layer of an Infinite Prandtl Number Fluid with<br>Temperature-Dependent Viscosity. Studia Geophysica Et Geodaetica, 2004, 48, 519-537.                                                            | 0.3  | 2         |
| 16 | Effect of lateral viscosity variations in the top 300 km on the geoid and dynamic topography.<br>Geophysical Journal International, 2003, 152, 566-580.                                                                                  | 1.0  | 109       |
| 17 | Can the 1D viscosity profiles inferred from postglacial rebound data be affected by lateral viscosity variations in the tectosphere?. Geophysical Research Letters, 2001, 28, 4403-4406.                                                 | 1.5  | 10        |
| 18 | Numerical simulations of the cooling of an oceanic lithosphere above a convective mantle. Physics of the Earth and Planetary Interiors, 2001, 125, 45-64.                                                                                | 0.7  | 52        |

LUCE FLEITOUT

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | On the interpretation of linear relationships between seafloor subsidence rate and the height of the ridge. Geophysical Journal International, 2001, 146, 691-698.                             | 1.0  | 4         |
| 20 | Flattening of the oceanic topography and geoid: thermal versus dynamic origin. Geophysical Journal<br>International, 2000, 143, 582-594.                                                       | 1.0  | 33        |
| 21 | Long-wavelength geoid: the effect of continental roots and lithosphere thickness variations.<br>Geophysical Journal International, 2000, 143, 945-963.                                         | 1.0  | 11        |
| 22 | Heat transport in stagnant lid convection with temperature- and pressure-dependent Newtonian or non-Newtonian rheology. Journal of Geophysical Research, 1999, 104, 12759-12777.               | 3.3  | 129       |
| 23 | Thermal evolution of the oceanic lithosphere: an alternative view. Earth and Planetary Science<br>Letters, 1996, 142, 121-136.                                                                 | 1.8  | 153       |
| 24 | Geoid anomalies and the structure of continental and oceanic lithospheres. Journal of Geophysical<br>Research, 1996, 101, 16119-16135.                                                         | 3.3  | 76        |
| 25 | Simple considerations on forces driving plate motion and on the plate-tectonic contribution to the long-wavelength geoid. Geophysical Journal International, 1996, 127, 268-282.               | 1.0  | 15        |
| 26 | Short-wavelength geoid, bathymetry and the convective pattern beneath the Pacific Ocean.<br>Geophysical Journal International, 1992, 110, 6-28.                                                | 1.0  | 46        |
| 27 | Geoid and topography associated with sublithospheric convection: negligible contribution from deep currents. Earth and Planetary Science Letters, 1991, 103, 395-408.                          | 1.8  | 13        |
| 28 | Topography of the ocean floor: Thermal evolution of the lithosphere and interaction of deep mantle heterogeneities with the lithosphere. Geophysical Research Letters, 1990, 17, 1961-1964.    | 1.5  | 82        |
| 29 | A directional analysis of the small wavelength geoid in the Pacific Ocean. Geophysical Research<br>Letters, 1989, 16, 251-254.                                                                 | 1.5  | 17        |
| 30 | Smallâ€wavelength geoid and topography anomalies in the South Atlantic Ocean: A clue to new hotâ€spot<br>tracks and lithospheric deformation. Geophysical Research Letters, 1989, 16, 637-640. | 1.5  | 32        |
| 31 | Global plate motion and the geoid: a physical model. Geophysical Journal International, 1988, 93, 477-484.                                                                                     | 1.0  | 43        |
| 32 | A new analysis of gravity and topography data over the Mid-Atlantic Ridge: non-compensation of the axial valley. Earth and Planetary Science Letters, 1988, 88, 308-320.                       | 1.8  | 12        |
| 33 | Active lithospheric thinning. Tectonophysics, 1986, 132, 271-278.                                                                                                                              | 0.9  | 56        |
| 34 | Thinning of the lithosphere by small-scale convective destabilization. Nature, 1985, 313, 125-128.                                                                                             | 13.7 | 136       |
| 35 | Geophysics: Small-scale mantle convection. Nature, 1985, 317, 478-479.                                                                                                                         | 13.7 | 1         |
| 36 | Steady state, secondary convection beneath lithospheric plates with temperature―and<br>pressureâ€dependent viscosity. Journal of Geophysical Research, 1984, 89, 9227-9244.                    | 3.3  | 94        |

LUCE FLEITOUT

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Stability of the oceanic lithosphere with variable viscosity: an initial-value approach. Physics of the<br>Earth and Planetary Interiors, 1984, 34, 173-185.                     | 0.7 | 42        |
| 38 | Secondary convection and the growth of the oceanic lithosphere. Physics of the Earth and Planetary Interiors, 1984, 36, 181-212.                                                 | 0.7 | 70        |
| 39 | Tectonic stresses in the lithosphere. Tectonics, 1983, 2, 315-324.                                                                                                               | 1.3 | 128       |
| 40 | The earthquake cycle in subduction zones. Geophysical Research Letters, 1982, 9, 21-24.                                                                                          | 1.5 | 25        |
| 41 | Tectonics and topography for a lithosphere containing density heterogeneities. Tectonics, 1982, 1, 21-56.                                                                        | 1.3 | 303       |
| 42 | Global volcanism and tectonism on Mercury: comparison with the Moon. Earth and Planetary Science<br>Letters, 1982, 58, 95-103.                                                   | 1.8 | 11        |
| 43 | Far-field tectonics associated with a large impact basin: applications to Caloris on Mercury and<br>Imbrium on the Moon. Earth and Planetary Science Letters, 1982, 58, 104-115. | 1.8 | 14        |
| 44 | Thermal and mechanical evolution of shear zones. Journal of Structural Geology, 1980, 2, 159-164.                                                                                | 1.0 | 152       |
| 45 | Shear deformation zones along major transform faults and subducting slabs. Geophysical Journal<br>International, 1978, 54, 93-119.                                               | 1.0 | 173       |