
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7714081/publications.pdf Version: 2024-02-01

ΙΠΝ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Lab-on-a-chip (lab-on-a-phone) for analysis of blood and diagnosis of blood diseases. , 2022, , 237-264.		2
2	Multiphysics microfluidics for cell manipulation and separation: a review. Lab on A Chip, 2022, 22, 423-444.	3.1	47
3	Magnetic cell separation. , 2022, , 193-225.		2
4	On-demand deterministic release of particles and cells using stretchable microfluidics. Nanoscale Horizons, 2022, 7, 414-424.	4.1	6
5	Enhanced Blood Plasma Extraction Utilising Viscoelastic Effects in a Serpentine Microchannel. Biosensors, 2022, 12, 120.	2.3	4
6	Tuning particle inertial separation in sinusoidal channels by embedding periodic obstacle microstructures. Lab on A Chip, 2022, 22, 2789-2800.	3.1	24
7	Atherothrombosisâ€onâ€Chip: A Siteâ€Specific Microfluidic Model for Thrombus Formation and Drug Discovery. Advanced Biology, 2022, 6, .	1.4	8
8	Signal-Based Methods in Dielectrophoresis for Cell and Particle Separation. Biosensors, 2022, 12, 510.	2.3	12
9	Digital Imagingâ€based Colourimetry for Enzymatic Processes in Transparent Liquid Marbles. ChemPhysChem, 2021, 22, 99-105.	1.0	12
10	Nonlinear microfluidics: device physics, functions, and applications. Lab on A Chip, 2021, 21, 1241-1268.	3.1	32
11	Multiplexed serpentine microchannels for high-throughput sorting of disseminated tumor cells from malignant pleural effusion. Sensors and Actuators B: Chemical, 2021, 337, 129758.	4.0	34
12	Sheathless Separation of Cyanobacterial <i>Anabaena</i> by Shape Using Viscoelastic Microfluidics. Analytical Chemistry, 2021, 93, 12648-12654.	3.2	24
13	Investigation of viscoelastic focusing of particles and cells in a zigzag microchannel. Electrophoresis, 2021, 42, 2230-2237.	1.3	10
14	Oscillating sessile liquid marble - A tool to assess effective surface tension. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127176.	2.3	10
15	Size-tuneable isolation of cancer cells using stretchable inertial microfluidics. Lab on A Chip, 2021, 21, 2008-2018.	3.1	21
16	Magnetofluidic spreading in circular chambers under a uniform magnetic field. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	3
17	Stretchable Inertial Microfluidic Device for Tunable Particle Separation. Analytical Chemistry, 2020, 92, 12473-12480.	3.2	25
18	A Review of Secondary Flow in Inertial Microfluidics. Micromachines, 2020, 11, 461.	1.4	75

#	Article	IF	CITATIONS
19	Inertial Microfluidic Purification of Floating Cancer Cells for Drug Screening and Three-Dimensional Tumor Models. Analytical Chemistry, 2020, 92, 11558-11564.	3.2	20
20	High-Efficiency Plasma Separator Based on Immunocapture and Filtration. Micromachines, 2020, 11, 352.	1.4	10
21	Direct Measurement of the Contents, Thickness, and Internal Pressure of Molybdenum Disulfide Nanoblisters. Nano Letters, 2020, 20, 3478-3484.	4.5	14
22	Knockdown of TXNDC9 induces apoptosis and autophagy in glioma and mediates cell differentiation by p53 activation. Aging, 2020, 12, 18649-18659.	1.4	7
23	Sheathless separation of microalgae from bacteria using a simple straight channel based on viscoelastic microfluidics. Lab on A Chip, 2019, 19, 2811-2821.	3.1	42
24	Demonstration of Electron/Hole Injections in the Gate of \$p\$-GaN/AlGaN/GaN Power Transistors and Their Effect on Device Dynamic Performance. , 2019, , .		10
25	Fundamentals of Differential Particle Inertial Focusing in Symmetric Sinusoidal Microchannels. Analytical Chemistry, 2019, 91, 4077-4084.	3.2	51
26	MiR-130a exerts neuroprotective effects against ischemic stroke through PTEN/PI3K/AKT pathway. Biomedicine and Pharmacotherapy, 2019, 117, 109117.	2.5	71
27	Accurate dielectrophoretic positioning of a floating liquid marble with a two-electrode configuration. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	17
28	Synchronized generation and coalescence of largely dissimilar microdroplets governed by pulsating continuous-phase flow. Applied Physics Letters, 2019, 114, .	1.5	9
29	Dean-flow-coupled elasto-inertial particle and cell focusing in symmetric serpentine microchannels. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	33
30	Microfluidic Array Chip for Parallel Detection of Waterborne Bacteria. Micromachines, 2019, 10, 883.	1.4	13
31	Flexible Microfluidics: Fundamentals, Recent Developments, and Applications. Micromachines, 2019, 10, 830.	1.4	130
32	Top sheath flow-assisted secondary flow particle manipulation in microchannels with the slanted groove structure. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	6
33	Tunable particle separation in a hybrid dielectrophoresis (DEP)- inertial microfluidic device. Sensors and Actuators B: Chemical, 2018, 267, 14-25.	4.0	99
34	Liquid metal-based amalgamation-assisted lithography for fabrication of complex channels with diverse structures and configurations. Lab on A Chip, 2018, 18, 785-792.	3.1	28
35	Integrated aeroelastic vibrator for fluid mixing in open microwells. Journal of Micromechanics and Microengineering, 2018, 28, 017001.	1.5	4
36	Versatile Microfluidic Platforms Enabled by Novel Magnetorheological Elastomer Microactuators. Advanced Functional Materials, 2018, 28, 1705484.	7.8	71

#	Article	IF	CITATIONS
37	A rapid, maskless 3D prototyping for fabrication of capillary circuits: Toward urinary protein detection. Electrophoresis, 2018, 39, 957-964.	1.3	6
38	Recent progress of particle migration in viscoelastic fluids. Lab on A Chip, 2018, 18, 551-567.	3.1	186
39	Design of a Single-Layer Microchannel for Continuous Sheathless Single-Stream Particle Inertial Focusing. Analytical Chemistry, 2018, 90, 1786-1794.	3.2	27
40	A low cost, membranes based serum separator modular. Biomicrofluidics, 2018, 12, 024108.	1.2	7
41	A portable, hand-powered microfluidic device for sorting of biological particles. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	28
42	Sheathless Dean-flow-coupled elasto-inertial particle focusing and separation in viscoelastic fluid. RSC Advances, 2017, 7, 3461-3469.	1.7	35
43	High-throughput sheathless and three-dimensional microparticle focusing using a microchannel with arc-shaped groove arrays. Scientific Reports, 2017, 7, 41153.	1.6	27
44	Flow rate-insensitive microparticle separation and filtration using a microchannel with arc-shaped groove arrays. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	21
45	High Throughput Cell-Free Extraction of Plasma by an Integrated Microfluidic Device Combining Inertial Focusing and Membrane. Journal of Heat Transfer, 2017, 139, .	1.2	3
46	High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 1422-1430.	2.7	47
47	On-Chip Microparticle and Cell Washing Using Coflow of Viscoelastic Fluid and Newtonian Fluid. Analytical Chemistry, 2017, 89, 9574-9582.	3.2	37
48	Inertial Microfluidics: Mechanisms and Applications. Microsystems and Nanosystems, 2017, , 563-593.	0.1	6
49	Hybrid microfluidics combined with active and passive approaches for continuous cell separation. Electrophoresis, 2017, 38, 238-249.	1.3	138
50	Double-Mode Microparticle Manipulation by Tunable Secondary Flow in Microchannel With Arc-Shaped Groove Arrays. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 1406-1412.	2.7	8
51	The Continuous Concentration of Particles and Cancer Cell Line Using Cell Margination in a Groove-Based Channel. Micromachines, 2017, 8, 315.	1.4	5
52	Tunable Particle Focusing in a Straight Channel with Symmetric Semicircle Obstacle Arrays Using Electrophoresis-Modified Inertial Effects. Micromachines, 2016, 7, 195.	1.4	19
53	Investigation of particle lateral migration in sampleâ€sheath flow of viscoelastic fluid and Newtonian fluid. Electrophoresis, 2016, 37, 2147-2155.	1.3	36
54	High Throughput Cell-Free Extraction of Plasma by an Integrated Microfluidic Device Combining Inertial Microfluidics and Membrane. , 2016, , .		0

#	Article	IF	CITATIONS
55	A label-free and high-throughput separation of neuron and glial cells using an inertial microfluidic platform. Biomicrofluidics, 2016, 10, 034104.	1.2	11
56	High-throughput, sheathless, magnetophoretic separation of magnetic and non-magnetic particles with a groove-based channel. Applied Physics Letters, 2016, 109, .	1.5	16
57	An inverted micro-mixer based on a magnetically-actuated cilium made of Fe doped PDMS. Smart Materials and Structures, 2016, 25, 095049.	1.8	16
58	Continuous plasma extraction under viscoelastic fluid in a straight channel with asymmetrical expansion–contraction cavity arrays. Lab on A Chip, 2016, 16, 3919-3928.	3.1	50
59	A novel viscoelastic-based ferrofluid for continuous sheathless microfluidic separation of nonmagnetic microparticles. Lab on A Chip, 2016, 16, 3947-3956.	3.1	73
60	Development of a novel magnetophoresis-assisted hydrophoresis microdevice for rapid particle ordering. Biomedical Microdevices, 2016, 18, 54.	1.4	16
61	Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation. Lab on A Chip, 2016, 16, 2791-2802.	3.1	135
62	Three-dimensional particle focusing under viscoelastic flow based on dean-flow-coupled elasto-inertial effects. , 2016, , .		0
63	Fundamentals and applications of inertial microfluidics: a review. Lab on A Chip, 2016, 16, 10-34.	3.1	737
64	Dean-flow-coupled elasto-inertial three-dimensional particle focusing under viscoelastic flow in a straight channel with asymmetrical expansion–contraction cavity arrays. Biomicrofluidics, 2015, 9, 044108.	1.2	49
65	A hybrid dielectrophoretic and hydrophoretic microchip for particle sorting using integrated prefocusing and sorting steps. Electrophoresis, 2015, 36, 284-291.	1.3	34
66	An integrated dielectrophoresis-active hydrophoretic microchip for continuous particle filtration and separation. Journal of Micromechanics and Microengineering, 2015, 25, 084010.	1.5	26
67	Making a hydrophoretic focuser tunable using a diaphragm. Biomicrofluidics, 2014, 8, 064115.	1.2	9
68	Particle inertial focusing and its mechanism in a serpentine microchannel. Microfluidics and Nanofluidics, 2014, 17, 305-316.	1.0	114
69	Influence of void space on microscopic behavior of fluid flow in rock joints. International Journal of Mining Science and Technology, 2014, 24, 335-340.	4.6	8
70	A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation. Journal Physics D: Applied Physics, 2014, 47, 063001.	1.3	174
71	Real-time control of inertial focusing in microfluidics using dielectrophoresis (DEP). RSC Advances, 2014, 4, 62076-62085.	1.7	62
72	High throughput extraction of plasma using a secondary flow-aided inertial microfluidic device. RSC Advances, 2014, 4, 33149.	1.7	88

#	Article	IF	CITATIONS
73	Isolating plasma from blood using a dielectrophoresis-active hydrophoretic device. Lab on A Chip, 2014, 14, 2993.	3.1	73
74	On-chip high-throughput manipulation of particles in a dielectrophoresis-active hydrophoretic focuser. Scientific Reports, 2014, 4, 5060.	1.6	46
75	Inertial particle separation by differential equilibrium positions in a symmetrical serpentine micro-channel. Scientific Reports, 2014, 4, 4527.	1.6	152
76	Inertial focusing in a straight channel with asymmetrical expansion–contraction cavity arrays using two secondary flows. Journal of Micromechanics and Microengineering, 2013, 23, 085023.	1.5	57
77	Investigation of trapping process in $\hat{a} \in \infty$ Centrifuge-on-a-chip $\hat{a} \in \mathbf{r}$, 2013, , .		1