Shuxun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7713935/publications.pdf

Version: 2024-02-01

516710 454955 1,401 39 16 30 citations h-index g-index papers 40 40 40 2185 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of Gene Delivery Approaches on Differentiation Potential and Gene Function of Mesenchymal Stem Cells. IEEE Transactions on Biomedical Engineering, 2022, 69, 83-95.	4.2	4
2	Knock-In of a Large Reporter Gene via the High-Throughput Microinjection of the CRISPR/Cas9 System. IEEE Transactions on Biomedical Engineering, 2022, 69, 2524-2532.	4.2	5
3	Laser-induced fusion of biological cells with cell positioning technique. , 2021, , 137-146.		O
4	Dynamic regulation of mitochondrial-endoplasmic reticulum crosstalk during stem cell homeostasis and aging. Cell Death and Disease, 2021, 12, 794.	6.3	6
5	Precise Drug Delivery by Using PLGA-Based Microspheres and Optical Manipulators. IEEE Transactions on Nanobioscience, 2020, 19, 192-202.	3.3	5
6	Development of Magnetâ€Driven and Imageâ€Guided Degradable Microrobots for the Precise Delivery of Engineered Stem Cells for Cancer Therapy. Small, 2020, 16, e1906908.	10.0	84
7	Automated High-Productivity Microinjection System for Adherent Cells. IEEE Robotics and Automation Letters, 2020, 5, 1167-1174.	5.1	22
8	Precise Automated Intracellular Delivery Using a Robotic Cell Microscope System With Three-Dimensional Image Reconstruction Information. IEEE/ASME Transactions on Mechatronics, 2020, 25, 2870-2881.	5.8	16
9	Gravitational sedimentation-based approach for ultra-simple and flexible cell patterning coculture on microfluidic device. Biofabrication, 2020, 12, 035005.	7.1	7
10	Automated Indirect Transportation of Biological Cells with Optical Tweezers and a 3D Printed Microtool. Applied Sciences (Switzerland), 2019, 9, 2883.	2.5	10
11	Indirect Transportation of Filamentous Cells by Using Optically Actuated Microtools. , 2019, , .		1
12	Lgr5â€overexpressing mesenchymal stem cells augment fracture healing through regulation of Wnt/ERK signaling pathways and mitochondrial dynamics. FASEB Journal, 2019, 33, 8565-8577.	0.5	25
13	Calcium Spike Patterns Reveal Linkage of Electrical Stimulus and MSC Osteogenic Differentiation. IEEE Transactions on Nanobioscience, 2019, 18, 3-9.	3.3	5
14	Translational and rotational manipulation of filamentous cells using optically driven microrobots. Optics Express, 2019, 27, 16475.	3.4	19
15	Development of a collision-avoidance vector based control algorithm for automated in-vivo transportation of biological cells. Automatica, 2018, 90, 147-156.	5.0	11
16	A simplified sheathless cell separation approach using combined gravitational-sedimentation-based prefocusing and dielectrophoretic separation. Lab on A Chip, 2018, 18, 1521-1532.	6.0	50
17	Microfluidic platform for probing cancer cells migration property under periodic mechanical confinement. Biomicrofluidics, 2018, 12, 024118.	2.4	17
18	Magnetic Force-driven in Situ Selective Intracellular Delivery. Scientific Reports, 2018, 8, 14205.	3.3	7

#	Article	IF	Citations
19	Development of a magnetic microrobot for carrying and delivering targeted cells. Science Robotics, 2018, 3, .	17.6	290
20	Increasing the physical size and nucleation status of human pluripotent stem cell-derived ventricular cardiomyocytes by cell fusion. Stem Cell Research, 2017, 19, 76-81.	0.7	9
21	Microfluidic single-cell array platform enabling week-scale clonal expansion under chemical/electrical stimuli. Biomicrofluidics, 2017, 11, .	2.4	10
22	<italic>In Vivo</italic> Manipulation of Single Biological Cells With an Optical Tweezers-Based Manipulator and a Disturbance Compensation Controller. IEEE Transactions on Robotics, 2017, 33, 1200-1212.	10.3	43
23	Automated Transportation of Multiple Cell Types Using a Robot-Aided Cell Manipulation System With Holographic Optical Tweezers. IEEE/ASME Transactions on Mechatronics, 2017, 22, 804-814.	5.8	26
24	Design of an automated controller with collision-avoidance capability for in-vivo transportation of biological cells. , $2017, \dots$		3
25	Development of biocompatible magnetic microrobot transporter using 3D laser lithography. , 2016, , .		4
26	Cell out-of-plane rotation control using a cell surgery robotic system equipped with optical tweezers manipulators. , 2016, , .		5
27	Single Cell Transfection through Precise Microinjection with Quantitatively Controlled Injection Volumes. Scientific Reports, 2016, 6, 24127.	3.3	84
28	Fusion with stem cell makes the hepatocellular carcinoma cells similar to liver tumor-initiating cells. BMC Cancer, 2016, 16, 56.	2.6	28
29	A High-Throughput Automated Microinjection System for Human Cells With Small Size. IEEE/ASME Transactions on Mechatronics, 2016, 21, 838-850.	5.8	64
30	Fabrication and characterization of magnetic porous microrobots., 2015,,.		1
31	Development of a high throughput robot-aided cell injection system for human cells. , 2014, , .		4
32	Laser-induced fusion of human embryonic stem cells with optical tweezers. Applied Physics Letters, 2013, 103, 033701.	3.3	35
33	Artificially induced cell fusion by optical tweezers manipulation. , 2013, , .		0
34	Automated laser-induced cell fusion based on microwell array. , 2013, , .		2
35	Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition. Journal of Micromechanics and Microengineering, 2013, 23, 075006.	2.6	41
36	A microengineered cell fusion approach with combined optical tweezers and microwell array technologies. RSC Advances, 2013, 3, 23589.	3.6	16

SHUXUN CHEN

#	Article	IF	CITATIONS
37	Probing the mechanobiological properties of human embryonic stem cells in cardiac differentiation by optical tweezers. Journal of Biomechanics, 2012, 45, 123-128.	2.1	67
38	Automated parallel cell isolation and deposition using microwell array and optical tweezers. , 2012, , .		2
39	Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab on A Chip, $2011,11,3656.$	6.0	372