
Hans RamlÃ_v

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7713843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Survival in extreme environments – on the current knowledge of adaptations in tardigrades. Acta Physiologica, 2011, 202, 409-420.	1.8	182
2	Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5716-5720.	3.3	165
3	Trehalose accumulation in the tardigradeAdorybiotus coronifer during anhydrobiosis. The Journal of Experimental Zoology, 1991, 258, 303-311.	1.4	162
4	Biochemical and technical observations supporting the use of copepods as live feed organisms in marine larviculture. Aquaculture Research, 2006, 37, 756-772.	0.9	131
5	CRYPTOBIOSIS IN TARDIGRADA. Biological Reviews, 1992, 67, 1-29.	4.7	125
6	Cryptobiosis in the Eutardigrade Adorybiotus (Richtersius) coronifer: Tolerance to Alcohols, Temperature and de novo Protein Synthesis. Zoologischer Anzeiger, 2001, 240, 517-523.	0.4	92
7	Inhibition of Gas Hydrate Nucleation and Growth: Efficacy of an Antifreeze Protein from the Longhorn Beetle <i>Rhagium mordax</i> . Energy & Fuels, 2014, 28, 3666-3672.	2.5	90
8	Effect of cold storage upon eggs of a calanoid copepod, Acartia tonsa (Dana) and their offspring. Aquaculture, 2006, 254, 714-729.	1.7	83
9	Survival of the cryptobiotic eutardigrade Adorybiotus coronifer during cooling to â^'196 °C: Effect of cooling rate, trehalose level, and short-term acclimation. Cryobiology, 1992, 29, 125-130.	0.3	76
10	Trehalose in desiccated rotifers: a comparison between a bdelloid and a monogonont species. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2004, 139, 527-532.	0.8	70
11	Ice-active proteins from the Antarctic nematode Panagrolaimus davidi. Cryobiology, 2005, 51, 198-207.	0.3	56
12	Freezing tolerance of the New Zealand alpine weta, Hemideina maori Hutton [Orthoptera; Stenopelmatidae]. Journal of Thermal Biology, 1992, 17, 51-54.	1.1	54
13	Inhibition of Methane Hydrate Formation by Ice-Structuring Proteins. Industrial & Engineering Chemistry Research, 2010, 49, 1486-1492.	1.8	52
14	Structural characteristics of a novel antifreeze protein from the longhorn beetle Rhagium inquisitor. Insect Biochemistry and Molecular Biology, 2011, 41, 109-117.	1.2	51
15	Recrystallization in a Freezing Tolerant Antarctic Nematode,Panagrolaimus davidi,and an Alpine Weta,Hemideina maori(Orthoptera; Stenopelmatidae). Cryobiology, 1996, 33, 607-613.	0.3	47
16	Microclimate and variations in haemolymph composition in the freezing-tolerant New Zealand alpine weta Hemideina maori Hutton (Orthoptera: Stenopelmatidae). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1999, 169, 224-235.	0.7	43
17	Cyclomorphosis in Tardigrada: adaptation to environmental constraints. Journal of Experimental Biology, 2009, 212, 2803-2811.	0.8	42
18	Production and biochemical composition of eggs from neritic calanoid copepods reared in large outdoor tanks (Limfjord, Denmark). Aquaculture, 2007, 263, 84-96.	1.7	40

Hans RamlÃ,v

#	Article	IF	CITATIONS
19	Influence of storage conditions on viability of quiescent copepod eggs (Acartia tonsa Dana): effects of temperature, salinity and anoxia. Aquaculture Research, 2006, 37, 625-631.	0.9	38
20	Hyperactive antifreeze proteins from longhorn beetles: Some structural insights. Journal of Insect Physiology, 2012, 58, 1502-1510.	0.9	37
21	Molecular structure of a hyperactive antifreeze protein adsorbed to ice. Journal of Chemical Physics, 2019, 150, 131101.	1.2	34
22	Ice-active proteins and cryoprotectants from the New Zealand alpine cockroach, Celatoblatta quinquemaculata. Journal of Insect Physiology, 2009, 55, 27-31.	0.9	32
23	Antifreeze activity in the cerambycid beetle Rhagium inquisitor. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1999, 169, 55-60.	0.7	31
24	Freeze tolerance evolution among anurans: Frequency and timing of appearance. Cryobiology, 2009, 58, 241-247.	0.3	29
25	Anhydrobiosis and Freezing-Tolerance: Adaptations That Facilitate the Establishment of Panagrolaimus Nematodes in Polar Habitats. PLoS ONE, 2015, 10, e0116084.	1.1	28
26	Respiration rates of subitaneous eggs from a marine calanoid copepod: monitored by nanorespirometry. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2007, 177, 287-296.	0.7	23
27	Role of cutaneous surface fluid in frog osmoregulation. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2013, 165, 365-370.	0.8	23
28	Effects of sea-ice light attenuation and CDOM absorption in the water below the Eurasian sector of central Arctic Ocean (>88°N). Polar Research, 2015, 34, 23978.	1.6	23
29	Cold tolerance of an endoparasitic nematode within a freezing-tolerant orthopteran host. Parasitology, 1994, 109, 367-372.	0.7	21
30	Metabolic activity and water vapour absorption in the mealworm Tenebrio molitor L. (Coleoptera,) Tj ETQq0 0 0 Biology, 2004, 207, 545-552.	rgBT /Ove 0.8	rlock 10 Tf 50 20
31	Survival and metabolism of Rana arvalis during freezing. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2009, 179, 223-230.	0.7	20
32	Antifreeze activity enhancement by site directed mutagenesis on an antifreeze protein from the beetle <i>Rhagium mordax</i> . FEBS Letters, 2014, 588, 1767-1772.	1.3	18
33	Inorganic ion composition in Tardigrada: cryptobionts contain large fraction of unidentified organic solutes. Journal of Experimental Biology, 2013, 216, 1235-43.	0.8	17
34	Inhibition of Bacterial Ice Nucleators Is Not an Intrinsic Property of Antifreeze Proteins. Journal of Physical Chemistry B, 2020, 124, 4889-4895.	1.2	17
35	Ice Recrystallization Inhibition Is Insufficient to Explain Cryopreservation Abilities of Antifreeze Proteins. Biomacromolecules, 2022, 23, 1214-1220.	2.6	17
36	Purification, crystal structure determination and functional characterization of type III antifreeze proteins from the European eelpout Zoarces viviparus. Cryobiology, 2014, 69, 163-168.	0.3	15

Hans RamlÃ,v

#	Article	IF	CITATIONS
37	Artemia cysts at subzero temperatures studied by differential scanning calorimetry. Cryobiology, 1992, 29, 131-137.	0.3	13
38	Antifreeze glycoproteins from the antarctic fish Dissostichus mawsoni studied by differential scanning calorimetry (DSC) in combination with nanolitre osmometry. Cryo-Letters, 2005, 26, 73-84.	0.1	13
39	Antifreeze activity in the gastrointestinal fluids of Arctogadus glacialis (Peters 1874) is dependent on food type. Journal of Experimental Biology, 2005, 208, 2609-2613.	0.8	12
40	Low thermodynamic but high kinetic stability of an antifreeze protein from <i>Rhagium mordax</i> . Protein Science, 2014, 23, 760-768.	3.1	12
41	Variations in antifreeze activity and serum inorganic ions in the eelpout Zoarces viviparus: antifreeze activity in the embryonic state. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2001, 130, 123-132.	0.8	10
42	Metabolic changes associated with active water vapour absorption in the mealworm Tenebrio molitor L. (Coleoptera, Tenebrionidae): A microcalorimetric study. Journal of Insect Physiology, 2006, 52, 291-299.	0.9	8
43	Inhibition of methane hydrate nucleation and growth by an antifreeze protein. Journal of Petroleum Science and Engineering, 2019, 183, 106388.	2.1	8
44	Controlling the Freezing Process with Antifreeze Proteins. , 2014, , 539-562.		7
45	An open source cryostage and software analysis method for detection of antifreeze activity. Cryobiology, 2016, 72, 251-257.	0.3	4
46	Detecting seasonal variation of antifreeze protein distribution in Rhagium mordax using immunofluorescence and high resolution microscopy. Cryobiology, 2017, 74, 132-140.	0.3	4
47	Respiration Measurements of Individual Tardigrades of the Species <i>Richtersius</i> cf <i>coronifer</i> as a Function of Temperature and Salinity and Termination of Anhydrobiosis. Astrobiology, 2021, 21, 853-865.	1.5	3
48	Bound Water and Cryptobiosis:Thermodynamic Properties of Water at Biopolymer Surfaces. Zoologischer Anzeiger, 2001, 240, 557-562.	0.4	2
49	A method for studying the metabolic activity of individual tardigrades by measuring oxygen uptake using micro-respirometry. Journal of Experimental Biology, 2020, 223, .	0.8	2
50	Inhibition of Gas Hydrate Formation by Low-dosage, Environmentally Benign Inhibitors. , 2010, , 445-453.		1
51	A tribute to Karl Erik Zachariassen. Journal of Insect Physiology, 2011, 57, 1061-1065.	0.9	1
52	Data from thermal testing of the Open Source Cryostage. Data in Brief, 2016, 8, 885-890.	0.5	1
53	Ice Formation in Living Organisms. , 2020, , 53-82.		1
54	Physicochemical Properties of Antifreeze Proteins. , 2020, , 43-67.		0

Physicochemical Properties of Antifreeze Proteins. , 2020, , 43-67. 54

4

#	Article	IF	CITATIONS
55	Summary and Future Directions. , 2020, , 357-362.		Ο
56	Other Protective Measures of Antifreeze Proteins. , 2020, , 185-203.		0
57	Mutational Studies on Antifreeze Proteins. , 2020, , 327-354.		0