ÃđÃ;m Nyúl-Tóth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/771369/publications.pdf Version: 2024-02-01

ΔοΔ:ΜΝνΔ≌ι₋ΤΔ3τμ

#	Article	IF	CITATIONS
1	Malignant astrocyte swelling and impaired glutamate clearance drive the expansion of injurious spreading depolarization foci. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 584-599.	4.3	21
2	Cerebral venous congestion exacerbates cerebral microhemorrhages in mice. GeroScience, 2022, 44, 805-816.	4.6	10
3	Spatial transcriptomic analysis reveals inflammatory foci defined by senescent cells in the white matter, hippocampi and cortical grey matter in the aged mouse brain. GeroScience, 2022, 44, 661-681.	4.6	25
4	Old blood from heterochronic parabionts accelerates vascular aging in young mice: transcriptomic signature of pathologic smooth muscle remodeling. GeroScience, 2022, 44, 953-981.	4.6	15
5	Increased Susceptibility to Cerebral Microhemorrhages Is Associated With Imaging Signs of Microvascular Degeneration in the Retina in an Insulin-Like Growth Factor 1 Deficient Mouse Model of Accelerated Aging. Frontiers in Aging Neuroscience, 2022, 14, 788296.	3.4	11
6	Microvascular dysfunction and neurovascular uncoupling are exacerbated in peripheral artery disease, increasing the risk of cognitive decline in older adults. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H924-H935.	3.2	12
7	Ageâ€related alterations in the cerebrovasculature affect neurovascular coupling and BOLD fMRI responses: Insights from animal models of aging. Psychophysiology, 2021, 58, e13718.	2.4	25
8	Obesity-induced cognitive impairment in older adults: a microvascular perspective. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H740-H761.	3.2	51
9	IGF1R signaling regulates astrocyte-mediated neurovascular coupling in mice: implications for brain aging. GeroScience, 2021, 43, 901-911.	4.6	35
10	Demonstration of age-related blood-brain barrier disruption and cerebromicrovascular rarefaction in mice by longitudinal intravital two-photon microscopy and optical coherence tomography. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1370-H1392.	3.2	28
11	Early manifestation of gait alterations in the Tg2576 mouse model of Alzheimer's disease. GeroScience, 2021, 43, 1947-1957.	4.6	13
12	Cerebral Pericytes and Endothelial Cells Communicate through Inflammasome-Dependent Signals. International Journal of Molecular Sciences, 2021, 22, 6122.	4.1	7
13	Treatment with the BCL-2/BCL-xL inhibitor senolytic drug ABT263/Navitoclax improves functional hyperemia in aged mice. GeroScience, 2021, 43, 2427-2440.	4.6	40
14	Endothelial deficiency of insulin-like growth factor-1 receptor (IGF1R) impairs neurovascular coupling responses in mice, mimicking aspects of the brain aging phenotype. GeroScience, 2021, 43, 2387-2394.	4.6	31
15	Integrative Role of Hyperbaric Oxygen Therapy on Healthspan, Age-Related Vascular Cognitive Impairment, and Dementia. Frontiers in Aging, 2021, 2, .	2.6	6
16	Sleep deprivation impairs cognitive performance, alters task-associated cerebral blood flow and decreases cortical neurovascular coupling-related hemodynamic responses. Scientific Reports, 2021, 11, 20994.	3.3	22
17	Increases in hypertension-induced cerebral microhemorrhages exacerbate gait dysfunction in a mouse model of Alzheimer's disease. GeroScience, 2020, 42, 1685-1698.	4.6	33
18	Upregulation of Nucleotide-Binding Oligomerization Domain-, LRR- and Pyrin Domain-Containing Protein 3 in Motoneurons Following Peripheral Nerve Injury in Mice. Frontiers in Pharmacology, 2020, 11, 584184.	3.5	6

ÃĐÃim Nyúl-Tóth

#	Article	IF	CITATIONS
19	Pericyteâ€secreted IGF2 promotes breast cancer brain metastasis formation. Molecular Oncology, 2020, 14, 2040-2057.	4.6	27
20	Circulating anti-geronic factors from heterochonic parabionts promote vascular rejuvenation in aged mice: transcriptional footprint of mitochondrial protection, attenuation of oxidative stress, and rescue of endothelial function by young blood. GeroScience, 2020, 42, 727-748.	4.6	39
21	Neurovascular Inflammaging in Health and Disease. Cells, 2020, 9, 1614.	4.1	44
22	Nicotinamide mononucleotide (NMN) supplementation promotes neurovascular rejuvenation in aged mice: transcriptional footprint of SIRT1 activation, mitochondrial protection, anti-inflammatory, and anti-apoptotic effects. GeroScience, 2020, 42, 527-546.	4.6	85
23	Pharmacological or genetic depletion of senescent astrocytes prevents whole brain irradiation–induced impairment of neurovascular coupling responses protecting cognitive function in mice. GeroScience, 2020, 42, 409-428.	4.6	62
24	Single-cell RNA sequencing identifies senescent cerebromicrovascular endothelial cells in the aged mouse brain. GeroScience, 2020, 42, 429-444.	4.6	102
25	Cerebral venous congestion promotes bloodâ€brain barrier disruption and neuroinflammation, impairing cognitive function in mice FASEB Journal, 2020, 34, 1-1.	0.5	0
26	Nicotinamide mononucleotide (NMN) supplementation promotes antiâ€aging miRNA expression profile in the aorta of aged mice, predicting epigenetic rejuvenation and antiâ€atherogenic effects FASEB Journal, 2020, 34, 1-1.	0.5	0
27	Ageâ€related Changes in Systemic Circulation Promote Vascular Maladaptation and Impair Vascular Reactivity in Retinal and Brain Circulation in Older Adults. FASEB Journal, 2020, 34, 1-1.	0.5	Ο
28	Pharmacological or genetic depletion of senescent astrocytes prevents whole brain irradiationâ€induced impairment of neurovascular coupling responses protecting cognitive function in mice. FASEB Journal, 2020, 34, 1-1.	0.5	0
29	Fusogenic liposomes effectively deliver resveratrol to the cerebral microcirculation and improve endotheliumâ€dependent neurovascular coupling responses in aged mice FASEB Journal, 2020, 34, 1-1.	0.5	Ο
30	Treatment with the poly(ADPâ€ribose) polymerase inhibitor PJâ€34 improves cerebromicrovascular endothelial function, neurovascular coupling responses and cognitive performance in aged mice, supporting the NAD ⁺ depletion hypothesis of neurovascular aging FASEB Journal, 2020, 34, 1-1.	0.5	0
31	Response of the neurovascular unit to brain metastatic breast cancer cells. Acta Neuropathologica Communications, 2019, 7, 133.	5.2	24
32	Treatment with the poly(ADP-ribose) polymerase inhibitor PJ-34 improves cerebromicrovascular endothelial function, neurovascular coupling responses and cognitive performance in aged mice, supporting the NAD+ depletion hypothesis of neurovascular aging. GeroScience, 2019, 41, 533-542.	4.6	84
33	Assessment of age-related decline of neurovascular coupling responses by functional near-infrared spectroscopy (fNIRS) in humans. GeroScience, 2019, 41, 495-509.	4.6	63
34	Cerebral venous congestion promotes blood-brain barrier disruption and neuroinflammation, impairing cognitive function in mice. GeroScience, 2019, 41, 575-589.	4.6	47
35	Fusogenic liposomes effectively deliver resveratrol to the cerebral microcirculation and improve endothelium-dependent neurovascular coupling responses in aged mice. GeroScience, 2019, 41, 711-725.	4.6	45
36	Nrf2 dysfunction and impaired cellular resilience to oxidative stressors in the aged vasculature: from increased cellular senescence to the pathogenesis of age-related vascular diseases. GeroScience, 2019, 41, 727-738.	4.6	80

ÃĐÃim Nyúl-Tóth

#	Article	IF	CITATIONS
37	Nicotinamide mononucleotide (NMN) supplementation promotes anti-aging miRNA expression profile in the aorta of aged mice, predicting epigenetic rejuvenation and anti-atherogenic effects. GeroScience, 2019, 41, 419-439.	4.6	75
38	Paracellular and transcellular migration of metastatic cells through the cerebral endothelium. Journal of Cellular and Molecular Medicine, 2019, 23, 2619-2631.	3.6	41
39	Expression of pattern recognition receptors and activation of the non-canonical inflammasome pathway in brain pericytes. Brain, Behavior, and Immunity, 2017, 64, 220-231.	4.1	51
40	Role of pattern recognition receptors of the neurovascular unit in inflamm-aging. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H1000-H1012.	3.2	43
41	PEGylation of Reduced Graphene Oxide Induces Toxicity in Cells of the Blood–Brain Barrier: An <i>in Vitro</i> and <i>in Vivo</i> Study. Molecular Pharmaceutics, 2016, 13, 3913-3924.	4.6	71
42	Differences in the molecular structure of the blood-brain barrier in the cerebral cortex and white matter: an in silico, in vitro, and ex vivo study. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1702-H1714.	3.2	41
43	Transmigration characteristics of breast cancer and melanoma cells through the brain endothelium: Role of Rac and PI3K. Cell Adhesion and Migration, 2016, 10, 269-281.	2.7	35
44	Heterogeneity of the blood-brain barrier. Tissue Barriers, 2016, 4, e1143544.	3.2	163
45	Pharmaceutical Targeting of the Brain. Current Pharmaceutical Design, 2016, 22, 5442-5462.	1.9	28
46	Regulation of <scp>NOD</scp> â€like receptors and inflammasome activation in cerebral endothelial cells. Journal of Neurochemistry, 2015, 135, 551-564.	3.9	71
47	CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier. International Journal of Molecular Sciences, 2014, 15, 8063-8074.	4.1	29
48	Role of Rho/ <scp>ROCK</scp> signaling in the interaction of melanoma cells with the blood–brain barrier. Pigment Cell and Melanoma Research, 2014, 27, 113-123.	3.3	20