Junichi Tsutsui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7713559/publications.pdf

Version: 2024-02-01

840776 1058476 16 470 11 14 citations h-index g-index papers 27 27 27 856 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The contribution of bioenergy to the decarbonization of transport: a multi-model assessment. Climatic Change, 2022, 170, 1.	3.6	4
2	Minimal CMIP Emulator (MCE $v1.2$): a new simplified method for probabilistic climate projections. Geoscientific Model Development, 2022, 15, 951-970.	3.6	0
3	FalRv2.0.0: a generalized impulse response model for climate uncertainty and future scenario exploration. Geoscientific Model Development, 2021, 14, 3007-3036.	3.6	34
4	Reduced Complexity Model Intercomparison Project Phase 2: Synthesizing Earth System Knowledge for Probabilistic Climate Projections. Earth's Future, 2021, 9, e2020EF001900.	6.3	28
5	Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison. Climatic Change, 2020, 163, 1553-1568.	3.6	112
6	The role of advanced end-use technologies in long-term climate change mitigation: the interlinkage between primary bioenergy and energy end-use. Climatic Change, 2020, 163, 1659-1673.	3.6	4
7	Bioenergy technologies in long-run climate change mitigation: results from the EMF-33 study. Climatic Change, 2020, 163, 1603-1620.	3.6	31
8	Diagnosing Transient Response to CO ₂ Forcing in Coupled Atmosphereâ€Ocean Model Experiments Using a Climate Model Emulator. Geophysical Research Letters, 2020, 47, e2019GL085844.	4.0	15
9	Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response. Geoscientific Model Development, 2020, 13, 5175-5190.	3.6	70
10	Quantification of temperature response to CO2 forcing in atmosphere–ocean general circulation models. Climatic Change, 2017, 140, 287-305.	3.6	21
11	Role of end-use technologies in long-term GHG reduction scenarios developed with the BET model. Climatic Change, 2014, 123, 583-596.	3.6	11
12	Statistical Parameterization Expressing ENSO Variability and Reversibility in Response to CO2 Concentration Changes. Journal of Climate, 2014, 27, 398-410.	3.2	10
13	Response of the middle atmosphere to the $11\hat{a}\in\mathbf{y}$ ear solar cycle simulated with the Whole Atmosphere Community Climate Model. Journal of Geophysical Research, 2009, 114, .	3.3	12
14	Maximum Potential Intensity of Tropical Cyclones Derived from Numerical Experiments Using the Community Climate System Model (CCSM3). Journal of Disaster Research, 2008, 3, 25-32.	0.7	0
15	Response of the North Atlantic Thermohaline Circulation and Ventilation to Increasing Carbon Dioxide in CCSM3. Journal of Climate, 2006, 19, 2382-2397.	3.2	89
16	Long-term climate response to stabilized and overshoot anthropogenic forcings beyond the twenty-first century. Climate Dynamics, 2006, 28, 199-214.	3.8	12