
Basker Sundararaju

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7713440/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transition metal catalyzed nucleophilic allylic substitution: activation of allylic alcohols via ï€-allylic species. Chemical Society Reviews, 2012, 41, 4467.	18.7	426
2	A Functionalâ€Groupâ€Tolerant Catalytic <i>trans</i> â€Hydrogenation of Alkynes. Angewandte Chemie - International Edition, 2013, 52, 355-360.	7.2	204
3	Cobalt(III) atalyzed Dehydrative [4+2] Annulation of Oxime with Alkyne by CH and NOH Activation. Chemistry - A European Journal, 2015, 21, 15529-15533.	1.7	187
4	Lightâ€Driven Hydrogen Generation: Efficient Ironâ€Based Water Reduction Catalysts. Angewandte Chemie - International Edition, 2009, 48, 9962-9965.	7.2	176
5	A <i>trans</i> â€6elective Hydroboration of Internal Alkynes. Angewandte Chemie - International Edition, 2013, 52, 14050-14054.	7.2	175
6	sp ³ C–H Bond Activation with Ruthenium(II) Catalysts and C(3)-Alkylation of Cyclic Amines. Journal of the American Chemical Society, 2011, 133, 10340-10343.	6.6	166
7	Cp*Co(III)-Catalyzed C(sp ³)–H Bond Activation: A Highly Stereoselective and Regioselective Alkenylation of 8-Methylquinoline with Alkynes. ACS Catalysis, 2016, 6, 2792-2796.	5.5	166
8	Cobalt Catalyzed C–H and N–H Bond Annulation of Sulfonamide with Terminal and Internal Alkynes. Organic Letters, 2015, 17, 6118-6121.	2.4	143
9	Cobalt(<scp>iii</scp>) catalyzed C-8 selective C–H and C–O coupling of quinoline N-oxide with internal alkynes via C–H activation and oxygen atom transfer. Chemical Communications, 2016, 52, 1338-1341.	2.2	138
10	Cp*Co ^{III} atalyzed C(sp ³)â^'H Bond Amidation of 8â€Methylquinoline. Chemistry - A European Journal, 2016, 22, 9135-9138.	1.7	133
11	C-8-Selective Allylation of Quinoline: A Case Study of β-Hydride vs β-Hydroxy Elimination. Organic Letters, 2016, 18, 4198-4201.	2.4	126
12	Ruthenium(IV) Complexes Featuring P,Oâ€Chelating Ligands: Regioselective Substitution Directly from Allylic Alcohols. Angewandte Chemie - International Edition, 2010, 49, 2782-2785.	7.2	119
13	Cobalt catalyzed carbonylation of unactivated C(sp ³)–H bonds. Chemical Science, 2017, 8, 2431-2435.	3.7	115
14	Cp*Co(III)-Catalyzed Annulation of Carboxylic Acids with Alkynes. Organic Letters, 2017, 19, 2544-2547.	2.4	113
15	Room-Temperature C–H Bond Functionalization by Merging Cobalt and Photoredox Catalysis. ACS Catalysis, 2018, 8, 8115-8120.	5.5	113
16	A General Palladium atalyzed Carbonylative Sonogashira Coupling of Aryl Triflates. Chemistry - A European Journal, 2011, 17, 106-110.	1.7	100
17	Iron atalyzed Allylic Amination Directly from Allylic Alcohols. Chemistry - A European Journal, 2016, 22, 3952-3955.	1.7	100
18	Ruthenium atalyzed Cascade N―and C(3)â€Dialkylation of Cyclic Amines with Alcohols Involving Hydrogen Autotransfer Processes. Advanced Synthesis and Catalysis, 2010, 352, 3141-3146.	2.1	98

2

BASKER SUNDARARAJU

#	Article	IF	CITATIONS
19	Iron-Catalyzed Sustainable Synthesis of Pyrrole. Organic Letters, 2017, 19, 6-9.	2.4	90
20	Cp*Co(III)-Catalyzed C–H Alkylation with Maleimides Using Weakly Coordinating Carbonyl Directing Groups. Organic Letters, 2018, 20, 2835-2838.	2.4	84
21	Dehydrative Cp*Co(III)-Catalyzed C–H Bond Allenylation. Organic Letters, 2017, 19, 3699-3702.	2.4	82
22	Cp*Co ^{III} â€Catalyzed Bisâ€isoquinolone Synthesis by Câ^'H Annulation of Arylamide with 1,3â€Diyne. Chemistry - A European Journal, 2017, 23, 17454-17457.	1.7	77
23	Weak-Coordination in C–H Bond Functionalizations Catalyzed by 3d Metals. ACS Catalysis, 2022, 12, 3452-3506.	5.5	72
24	αâ€Alkylation of Ketones with Secondary Alcohols Catalyzed by Wellâ€Defined Cp*Co ^{III} â€Complexes. ChemSusChem, 2019, 12, 3463-3467.	3.6	60
25	Ruthenium-Catalyzed Reductive Amination of Allylic Alcohols. Organic Letters, 2011, 13, 3964-3967.	2.4	57
26	Recent developments on methanol as liquid organic hydrogen carrier in transfer hydrogenation reactions. Coordination Chemistry Reviews, 2021, 433, 213728.	9.5	57
27	Carboxylate Assisted Ni atalyzed Cĩ£¿H Bond Allylation of Benzamides. Chemistry - A European Journal, 2015, 21, 9364-9368.	1.7	56
28	Isolation of Cp*Co ^{III} –Alkenyl Intermediate in Efficient Cobaltâ€Catalyzed Câ^'H Alkenylation with Alkynes. Chemistry - A European Journal, 2018, 24, 342-346.	1.7	53
29	Recent advances in C(sp3) H bond carbonylation by first row transition metals. Tetrahedron Letters, 2018, 59, 862-868.	0.7	49
30	Co ^{III} â€Catalyzed Isonitrile Insertion/Acyl Group Migration Between Câ^'H and Nâ^'H bonds of Arylamides. Chemistry - A European Journal, 2018, 24, 2360-2364.	1.7	48
31	Cp*Co(<scp>iii</scp>)-catalyzed <i>N</i> -alkylation of amines with secondary alcohols. Organic Chemistry Frontiers, 2019, 6, 852-857.	2.3	48
32	Electrochemicalâ€∤Photoredox Aspects of Transition Metal atalyzed Directed Câ^'H Bond Activation. ChemCatChem, 2019, 11, 5160-5187.	1.8	47
33	C–H and N–H bond annulation of aryl amides with unactivated olefins by merging cobalt(iii) and photoredox catalysis. Chemical Communications, 2019, 55, 11626-11629.	2.2	45
34	Selective carbon–carbon bond formation: terpenylations of amines involving hydrogen transfers. Green Chemistry, 2013, 15, 775.	4.6	44
35	A General Cyclocarbonylation of Aryl Bromides and Triflates with Acetylenes: Palladium atalyzed Synthesis of 3â€Alkylidenefuranâ€2â€ones. Chemistry - A European Journal, 2011, 17, 8014-8017.	1.7	43
36	C-Alkylation of Various Carbonucleophiles with Secondary Alcohols under Co ^{III} -Catalysis. ACS Catalysis, 2020, 10, 8023-8031.	5.5	43

BASKER SUNDARARAJU

#	Article	IF	CITATIONS
37	lsoquinoline Derivatives via Stepwise Regioselective sp2 and sp3 C–H Bond Functionalizations. Journal of Organic Chemistry, 2012, 77, 3674-3678.	1.7	38
38	Cp*Co(III)â€Catalyzed <i>o</i> â€Amidation of Benzaldehydes with Dioxazolones Using Transient Directing Group Strategy. Advanced Synthesis and Catalysis, 2020, 362, 1195-1200.	2.1	38
39	Site-selective C–H bond carbonylation with CO ₂ and cobalt-catalysis. Catalysis Science and Technology, 2018, 8, 5963-5969.	2.1	35
40	Linear Selective C–H Bond Alkylation with Activated Olefins Catalyzed by Cp*Co ^{III} . European Journal of Organic Chemistry, 2017, 2017, 4370-4374.	1.2	32
41	C–H and N–H Bond Annulation of Benzamides with Isonitriles Catalyzed by Cobalt(III). Synthesis, 2017, 49, 3937-3944.	1.2	31
42	Asymmetric Induction by Chiral Borate Anions in Enantioselective Hydrogenation using a Racemic RhBinap Catalyst. ChemCatChem, 2010, 2, 55-57.	1.8	29
43	Efficient Transfer Hydrogenation of Ketones using Methanol as Liquid Organic Hydrogen Carrier. ChemCatChem, 2020, 12, 3472-3476.	1.8	26
44	Wellâ€defined Cp*Co(III)â€catalyzed Hydrogenation of Carbonates and Polycarbonates. ChemCatChem, 2021, 13, 934-939.	1.8	25
45	Recent advances in transition metal-catalyzed asymmetric electrocatalysis. Coordination Chemistry Reviews, 2021, 444, 214065.	9.5	25
46	Cp*Co ^{III} â€Catalyzed Efficient Dehydrogenation of Secondary Alcohols. Chemistry - an Asian Journal, 2018, 13, 2445-2448.	1.7	24
47	Cp*Co ^{III} -Catalyzed C(7)–H Bond Annulation of Indolines with Alkynes. Journal of Organic Chemistry, 2021, 86, 9407-9417.	1.7	24
48	Efficient ruthenium-catalyzed synthesis of [3]dendralenes from 1,3-dienic allylic carbonates. Chemical Communications, 2009, , 6580.	2.2	23
49	Synthesis of Overloaded Cyclopentadienyl Rhodium(III) Complexes via Cyclotetramerization of <i>tert</i> -Butylacetylene. Organometallics, 2021, 40, 3712-3719.	1.1	21
50	Cobalt atalyzed Reductive Alkylation of Amines with Carboxylic Acids. ChemSusChem, 2019, 12, 3089-3093.	3.6	20
51	Nickelâ€catalyzed Câ~'H bond Alkoxylation of Amides with Alcohols. Asian Journal of Organic Chemistry, 2018, 7, 1368-1371.	1.3	16
52	C–H bond functionalization by dual catalysis: merging of high-valent cobalt and photoredox catalysis. Chemical Communications, 2021, 57, 13075-13083.	2.2	16
53	Ruthenium-catalyzed selective N,N-diallylation- and N,N,O-triallylation of free amino acids. Organic and Biomolecular Chemistry, 2009, 7, 3906.	1.5	15
54	New Borrowing Hydrogen Mechanism for Redox-Active Metals. ACS Catalysis, 2021, 11, 11906-11920.	5.5	11

#	Article	IF	CITATIONS
55	Room-temperature C–H bond alkynylation by merging cobalt and photocatalysts. Chemical Communications, 2021, 57, 12167-12170.	2.2	10
56	Preparation of Sugar βâ€Amino Acid Derivatives with Cyclic Structures by Ringâ€Closing Metathesis. European Journal of Organic Chemistry, 2010, 2010, 6092-6096.	1.2	9
57	Dendralenes Preparation via Ene–Yne Crossâ€Metathesis from Inâ€Situ Generated 1,3â€Enynes. ChemCatCh 2011, 3, 1876-1879.	1.8	8
58	Ring Closing and Macrocyclization of βâ€Dipeptides by Olefin Metathesis. European Journal of Organic Chemistry, 2013, 2013, 6433-6442.	1.2	6
59	Wellâ€Defined [Cp*Co(N,O)I]â€Catalysts for Siteâ€Selective Intramolecular Câ^'H Amidation. Advanced Synthesis and Catalysis, 2022, 364, 2642-2647.	2.1	4
60	Synthesis and crystallographic studies of 2-(diphenylphosphinothioyl)-2-(3-oxobut-1-en-yl)ferrocene. Acta Crystallographica Section E: Crystallographic Communications, 2021, 77, 853-856.	0.2	0