List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7713142/publications.pdf Version: 2024-02-01

WELNING CHEN

#	Article	IF	CITATIONS
1	Screening and effect evaluation of chemical inducers for enhancing astaxanthin and lipid production in mixotrophic Chromochloris zofingiensis. Journal of Applied Phycology, 2022, 34, 159-176.	1.5	7
2	Clinically relevant materials & applications inspired by food technologies. EBioMedicine, 2022, 75, 103792.	2.7	5
3	Upcycling of brewers' spent grains via solid-state fermentation for the production of protein hydrolysates with antioxidant and techno-functional properties. Food Chemistry: X, 2022, 13, 100184.	1.8	14
4	Precision fermentation to advance fungal food fermentations. Current Opinion in Food Science, 2022, 47, 100881.	4.1	21
5	In Vitro Evaluation of Enriched Brewers' Spent Grains Using Bacillus subtilis WX-17 as Potential Functional Food Ingredients. Applied Biochemistry and Biotechnology, 2021, 193, 349-362.	1.4	2
6	Yeast-Derived Plant Phenolic Emulsions as Novel, Natural, and Sustainable Food Preservatives. ACS Food Science & Technology, 2021, 1, 326-337.	1.3	3
7	A metabolomics approach to evaluate postâ€fermentation enhancement of daidzein and genistein in a green okara extract. Journal of the Science of Food and Agriculture, 2021, 101, 5124-5131.	1.7	12
8	Evaluating the potential of <i>Bacillus subtilis</i> fermented okara as a functional food ingredient through <i>in vitro</i> digestion and fermentation. Food Biotechnology, 2021, 35, 136-157.	0.6	7
9	Comparison of Sustainable Lipid and Protein Removal Methods for the Isolation of Insect Chitin from Black Soldier Fly Exoskeleton. ACS Food Science & Technology, 2021, 1, 698-706.	1.3	5
10	Fermentation for future food systems. EMBO Reports, 2021, 22, e52680.	2.0	47
11	A novel biosustainable durian antimicrobial gel dressing. Journal of Wound Care, 2021, 30, 330-330.	0.5	3
12	Free Fatty Acids Reduction in Waste Cooking Oil by <i>Rhodosporidium toruloides</i> and Simultaneous Carotenoids, Lipids, and PAL Enzyme Production in a Twoâ€Phase Culture System. European Journal of Lipid Science and Technology, 2021, 123, 2000354.	1.0	6
13	Food Waste Durian Rind-Derived Cellulose Organohydrogels: Toward Anti-Freezing and Antimicrobial Wound Dressing. ACS Sustainable Chemistry and Engineering, 2021, 9, 1304-1312.	3.2	24
14	Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3825-3885.	5.9	112
15	Functional Attributes and Anticancer Potentialities of Chico (Pachycereus Weberi) and Jiotilla (Escontria Chiotilla) Fruits Extract. Plants, 2020, 9, 1623.	1.6	11
16	GC-MS-Based Metabolomics Analysis of Prawn Shell Waste Co-Fermentation by Lactobacillus plantarum and Bacillus subtilis. Polysaccharides, 2020, 1, 31-50.	2.1	6
17	Dual Extraction of Crustacean and Fungal Chitosan from a Single Mucor circinelloides Fermentation. Fermentation, 2020, 6, 40.	1.4	25
18	Effects of submerged liquid fermentation of <i>Bacillus subtilis</i> WXâ€17 using okara as sole nutrient source on the composition of a potential probiotic beverage. Food Science and Nutrition, 2020, 8, 3119-3127.	1.5	6

#	Article	IF	CITATIONS
19	Technology innovations for food security in Singapore: A case study of future food systems for an increasingly natural resource-scarce world. Trends in Food Science and Technology, 2020, 102, 155-168.	7.8	65
20	Potential novel nutritional beverage using submerged fermentation with Bacillus subtilis WX-17 on brewers' spent grains. Heliyon, 2020, 6, e04155.	1.4	16
21	Interfacial Assembly of a Cashew Nut (Anacardium occidentale) Testa Extract onto a Cellulose-Based Film from Sugarcane Bagasse to Produce an Active Packaging Film with pH-Triggered Release Mechanism. Food and Bioprocess Technology, 2020, 13, 501-510.	2.6	16
22	Microbial extraction of chitin from seafood waste using sugars derived from fruit waste-stream. AMB Express, 2020, 10, 17.	1.4	59
23	Production of a potential collagenolytic protease by nejayote fermentation with <i>Aspergillus oryzae</i> . International Journal of Food Science and Technology, 2020, 55, 3289-3296.	1.3	4
24	A preparation of β-glucans and anthocyanins (LoGiCarb™) lowers the <i>in vitro</i> digestibility and <i>in vivo</i> glycemic index of white rice. RSC Advances, 2020, 10, 5129-5133.	1.7	3
25	Antimicrobial and antioxidant activities of phenolic metabolites from flavonoid-producing yeast: Potential as natural food preservatives. Food Chemistry, 2019, 270, 123-129.	4.2	85
26	Gene Source Screening as a Tool for Naringenin Production in Engineered <i>Saccharomyces cerevisiae</i> . ACS Omega, 2019, 4, 12872-12879.	1.6	20
27	Solid State Fermentation of Brewers' Spent Grains for Improved Nutritional Profile Using Bacillus subtilis WX-17. Fermentation, 2019, 5, 52.	1.4	41
28	A metabolomic approach to understand the solid-state fermentation of okara using Bacillus subtilis WX-17 for enhanced nutritional profile. AMB Express, 2019, 9, 60.	1.4	44
29	An untargeted fecal and urine metabolomics analysis of the interplay between the gut microbiome, diet and human metabolism in Indian and Chinese adults. Scientific Reports, 2019, 9, 9191.	1.6	66
30	Potential Natural Food Preservatives and Their Sustainable Production in Yeast: Terpenoids and Polyphenols. Journal of Agricultural and Food Chemistry, 2019, 67, 4397-4417.	2.4	47
31	Metabolic Engineering of <i>Saccharomyces cerevisiae</i> for De Novo Production of Kaempferol. Journal of Agricultural and Food Chemistry, 2019, 67, 5596-5606.	2.4	61
32	Sustainable production of natural phenolics for functional food applications. Journal of Functional Foods, 2019, 57, 233-254.	1.6	80
33	Characterization and in Vitro Bioactivity of Green Extract from Fermented Soybean Waste. ACS Omega, 2019, 4, 21675-21683.	1.6	5
34	Eco-friendly and biodegradable cellulose hydrogels produced from low cost okara: towards non-toxic flexible electronics. Scientific Reports, 2019, 9, 18166.	1.6	78
35	Involvement of organic acids and amino acids in ameliorating Ni(II) toxicity induced cell cycle dysregulation in Caulobacter crescentus: a metabolomics analysis. Applied Microbiology and Biotechnology, 2018, 102, 4563-4575.	1.7	23
36	Valorization of brewer's spent grain using fungi solid-state fermentation to enhance nutritional value. Journal of Functional Foods, 2018, 42, 85-94.	1.6	57

#	Article	IF	CITATIONS
37	Comparative metabolic profiling of engineered Saccharomyces cerevisiae with enhanced flavonoids production. Journal of Functional Foods, 2018, 44, 274-282.	1.6	9
38	Similarities and differences in gut microbiome composition correlate with dietary patterns of Indian and Chinese adults. AMB Express, 2018, 8, 104.	1.4	55
39	Metabolomics analysis of Pseudomonas chlororaphis JK12 algicidal activity under aerobic and micro-aerobic culture condition. AMB Express, 2018, 8, 131.	1.4	16
40	Analysis of Improved Nutritional Composition of Potential Functional Food (Okara) after Probiotic Solid-State Fermentation. Journal of Agricultural and Food Chemistry, 2018, 66, 5373-5381.	2.4	65
41	Engineering <i>Saccharomyces cerevisiae</i> for Efficient Biosynthesis of Fatty Alcohols Based on Enhanced Supply of Free Fatty Acids. ACS Omega, 2017, 2, 3284-3290.	1.6	11
42	Biofouling formation and structure on original and modified PVDF membranes: role of microbial species and membrane properties. RSC Advances, 2017, 7, 37990-38000.	1.7	15
43	Enhancement of Naringenin Biosynthesis from Tyrosine by Metabolic Engineering of <i>Saccharomyces cerevisiae</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 6638-6646.	2.4	77
44	Evaluation of brewers' spent grain as a novel media for yeast growth. AMB Express, 2017, 7, 117.	1.4	31
45	A synthetic microbial consortium of <i>Shewanella</i> and <i>Bacillus</i> for enhanced generation of bioelectricity. Biotechnology and Bioengineering, 2017, 114, 526-532.	1.7	50
46	Effect of Supercritical Carbon Dioxide Extraction Parameters on the Biological Activities and Metabolites Present in Extracts from Arthrospira platensis. Marine Drugs, 2017, 15, 174.	2.2	26
47	Comparative proteomic analysis of engineered Saccharomyces cerevisiae with enhanced free fatty acid accumulation. Applied Microbiology and Biotechnology, 2016, 100, 1407-1420.	1.7	3
48	The effect of external resistance on biofilm formation and internal resistance in Shewanella inoculated microbial fuel cells. RSC Advances, 2016, 6, 20317-20323.	1.7	38
49	Engineering Rhodosporidium toruloides with a membrane transporter facilitates production and separation of carotenoids and lipids in a bi-phasic culture. Applied Microbiology and Biotechnology, 2016, 100, 869-877.	1.7	60
50	Identification of Cellular Targets of MicroRNA-181a in HepG2 Cells: A New Approach for Functional Analysis of MicroRNAs. PLoS ONE, 2015, 10, e0123167.	1.1	9
51	Enhanced production of fatty alcohols by engineering the TAGs synthesis pathway in <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2015, 112, 386-392.	1.7	31
52	Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production. Metabolic Engineering Communications, 2015, 2, 58-66.	1.9	34
53	MicroRNAs as therapeutic strategy for hepatitis B virus-associated hepatocellular carcinoma: Current status and future prospects. World Journal of Gastroenterology, 2014, 20, 5973.	1.4	11
54	Collective cell traction force analysis on aligned smooth muscle cell sheet between three-dimensional microwalls. Interface Focus, 2014, 4, 20130056.	1.5	11

#	Article	IF	CITATIONS
55	Effect of adhesive ligand on cell deadhesion kinetics on poly(N-isopropylacrylamide). Bio-Medical Materials and Engineering, 2014, 24, 1433-1445.	0.4	0
56	Investigation of fatty acid accumulation in the engineered Saccharomyces cerevisiae under nitrogen limited culture condition. Bioresource Technology, 2014, 162, 200-206.	4.8	16
57	Metabolomic Profiling of <i>Rhodosporidium toruloides</i> Grown on Glycerol for Carotenoid Production during Different Growth Phases. Journal of Agricultural and Food Chemistry, 2014, 62, 10203-10209.	2.4	84
58	Proteomics analysis of metabolically engineered yeast cells and medium-chained hydrocarbon biofuel precursors synthesis. AMB Express, 2014, 4, 61.	1.4	4
59	Enhancement of free fatty acid production in Saccharomyces cerevisiae by control of fatty acyl-CoA metabolism. Applied Microbiology and Biotechnology, 2014, 98, 6739-6750.	1.7	52
60	Engineering the Saccharomyces cerevisiae β-Oxidation Pathway to Increase Medium Chain Fatty Acid Production as Potential Biofuel. PLoS ONE, 2014, 9, e84853.	1.1	37
61	Proteomics Based Identification of Cell Migration Related Proteins in HBV Expressing HepG2 Cells. PLoS ONE, 2014, 9, e95621.	1.1	1
62	Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae. Metabolic Engineering, 2013, 16, 95-102.	3.6	95
63	"Malonate Uptake and Metabolism in Saccharomyces cerevisiae― Applied Biochemistry and Biotechnology, 2013, 171, 44-62.	1.4	15
64	Comparative Proteomics Analysis of Engineered Saccharomyces cerevisiae with Enhanced Biofuel Precursor Production. PLoS ONE, 2013, 8, e84661.	1.1	12
65	Comparative Proteomics Profile of Lipid-Cumulating Oleaginous Yeast: An iTRAQ-Coupled 2-D LC-MS/MS Analysis. PLoS ONE, 2013, 8, e85532.	1.1	37
66	Metabolomic Profiling of Cellular Responses to Carvedilol Enantiomers in Vascular Smooth Muscle Cells. PLoS ONE, 2010, 5, e15441.	1.1	24