Maria Rodriguez-Muñoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/771300/publications.pdf

Version: 2024-02-01

47 papers 2,013 citations

32 h-index

136885

243529 44 g-index

48 all docs

48 docs citations

48 times ranked

1801 citing authors

#	Article	IF	Citations
1	Human HINT1 Mutant Proteins that Cause Axonal Motor Neuropathy Exhibit Anomalous Interactions with Partner Proteins. Molecular Neurobiology, 2021, 58, 1834-1845.	1.9	5
2	Calmodulin Supports TRPA1 Channel Association with Opioid Receptors and Glutamate NMDA Receptors in the Nervous Tissue. International Journal of Molecular Sciences, 2021, 22, 229.	1.8	9
3	The $ \hat{f} $ Receptor and the HINT1 Protein Control $\hat{i}\pm2\hat{i}$ Binding to Glutamate NMDA Receptors: Implications in Neuropathic Pain. Biomolecules, 2021, 11, 1681.	1.8	7
4	The ALS-Related \ddot{l}_1 R E102Q Mutant Eludes Ligand Control and Exhibits Anomalous Response to Calcium. International Journal of Molecular Sciences, 2020, 21, 7339.	1.8	6
5	The Sigma 2 receptor promotes and the Sigma 1 receptor inhibits mu-opioid receptor-mediated antinociception. Molecular Brain, 2020, 13, 150.	1.3	13
6	The Axonal Motor Neuropathy-Related HINT1 Protein Is a Zinc- and Calmodulin-Regulated Cysteine SUMO Protease. Antioxidants and Redox Signaling, 2019, 31, 503-520.	2.5	15
7	Fenfluramine diminishes NMDA receptor-mediated seizures via its mixed activity at serotonin 5HT2A and type 1 sigma receptors. Oncotarget, 2018, 9, 23373-23389.	0.8	39
8	Cannabidiol enhances morphine antinociception, diminishes NMDA-mediated seizures and reduces stroke damage via the sigma 1 receptor. Molecular Brain, 2018, 11 , 51 .	1.3	80
9	Sigma 1 Receptor Antagonists Inhibit Manic-Like Behaviors in Two Congenital Strains of Mice. International Journal of Neuropsychopharmacology, 2018, 21, 938-948.	1.0	4
10	Increased PKC activity and altered GSK3β/NMDAR function drive behavior cycling in HINT1-deficient mice: bipolarity or opposing forces. Scientific Reports, 2017, 7, 43468.	1.6	15
11	Schizophrenia and depression, two poles of endocannabinoid system deregulation. Translational Psychiatry, 2017, 7, 1291.	2.4	38
12	Endocannabinoid control of glutamate NMDA receptors: the therapeutic potential and consequences of dysfunction. Oncotarget, 2016, 7, 55840-55862.	0.8	66
13	The ${\dagger}f1$ Receptor Engages the Redox-Regulated HINT1 Protein to Bring Opioid Analgesia Under NMDA Receptor Negative Control. Antioxidants and Redox Signaling, 2015, 22, 799-818.	2,5	71
14	HINT1 protein: A new therapeutic target to enhance opioid antinociception and block mechanical allodynia. Neuropharmacology, 2015, 89, 412-423.	2.0	37
15	Detecting Zinc Release Induced by Mu-Opioid Receptor Agonists in Brain Slices. Methods in Molecular Biology, 2015, 1230, 233-241.	0.4	2
16	The ON:OFF switch, \ddot{l}_1 R-HINT1 protein, controls GPCR-NMDA receptor cross-regulation: Implications in neurological disorders. Oncotarget, 2015, 6, 35458-35477.	0.8	50
17	The cannabinoid receptor 1 associates with NMDA receptors to produce glutamatergic hypofunction: implications in psychosis and schizophrenia. Frontiers in Pharmacology, 2014, 4, 169.	1.6	98
18	The calcium-sensitive Sigma-1 receptor prevents cannabinoids from provoking glutamate NMDA receptor hypofunction: implications in antinociception and psychotic diseases. International Journal of Neuropsychopharmacology, 2014, 17, 1943-1955.	1.0	45

#	Article	IF	Citations
19	Nitric Oxide and Zinc-Mediated Protein Assemblies Involved in Mu Opioid Receptor Signaling. Molecular Neurobiology, 2013, 48, 769-782.	1.9	44
20	HINT1 protein cooperates with cannabinoid 1 receptor to negatively regulate glutamate NMDA receptor activity. Molecular Brain, 2013, 6, 42.	1.3	43
21	Cannabinoid Receptors Couple to NMDA Receptors to Reduce the Production of NO and the Mobilization of Zinc Induced by Glutamate. Antioxidants and Redox Signaling, 2013, 19, 1766-1782.	2.5	69
22	The plasticity of the association between mu-opioid receptor and glutamate ionotropic receptor N in opioid analgesic tolerance and neuropathic pain. European Journal of Pharmacology, 2013, 716, 94-105.	1.7	47
23	The Mu-Opioid Receptor and the NMDA Receptor Associate in PAG Neurons: Implications in Pain Control. Neuropsychopharmacology, 2012, 37, 338-349.	2.8	155
24	GPCRs Promote the Release of Zinc Ions Mediated by nNOS/NO and the Redox Transducer RGSZ2 Protein. Antioxidants and Redox Signaling, 2012, 17, 1163-1177.	2.5	40
25	Direct Association of Mu-Opioid and NMDA Glutamate Receptors Supports their Cross-Regulation: Molecular Implications for Opioid Tolerance. Current Drug Abuse Reviews, 2012, 5, 199-226.	3.4	77
26	NO-released Zinc Supports the Simultaneous Binding of Raf-1 and PKCÎ ³ Cysteine-Rich Domains to HINT1 Protein at the Mu-Opioid Receptor. Antioxidants and Redox Signaling, 2011, 14, 2413-2425.	2.5	31
27	RGSZ2 Binds to the Neural Nitric Oxide Synthase PDZ Domain to Regulate Mu-Opioid Receptor-Mediated Potentiation of the <i>N</i> -Methyl-D-Aspartate Receptor-Calmodulin-Dependent Protein Kinase Il Pathway. Antioxidants and Redox Signaling, 2011, 15, 873-887.	2.5	30
28	The histidine triad nucleotide-binding protein 1 supports mu-opioid receptor–glutamate NMDA receptor cross-regulation. Cellular and Molecular Life Sciences, 2011, 68, 2933-2949.	2.4	50
29	SUMO-SIM Interactions Regulate the Activity of RGSZ2 Proteins. PLoS ONE, 2011, 6, e28557.	1.1	13
30	Mu-Opioid Receptors Transiently Activate the Akt-nNOS Pathway to Produce Sustained Potentiation of PKC-Mediated NMDAR-CaMKII Signaling. PLoS ONE, 2010, 5, e11278.	1.1	57
31	Brain-specific Gαz interacts with Src tyrosine kinase to regulate Mu-opioid receptor-NMDAR signaling pathway. Cellular Signalling, 2009, 21, 1444-1454.	1.7	27
32	Gz Mediates the Long-Lasting Desensitization of Brain CB1 Receptors and is Essential for Cross-Tolerance with Morphine. Molecular Pain, 2009, 5, 1744-8069-5-11.	1.0	48
33	NMDAR-nNOS generated zinc recruits PKCγ to the HINT1–RGS17 complex bound to the C terminus of Mu-opioid receptors. Cellular Signalling, 2008, 20, 1855-1864.	1.7	61
34	Calcium/calmodulin-dependent protein kinase II supports morphine antinociceptive tolerance by phosphorylation of glycosylated phosducin-like protein. Neuropharmacology, 2008, 54, 319-330.	2.0	23
35	Supersensitivity to $\hat{l}\frac{1}{4}$ -opioid receptor-mediated inhibition of the adenylyl cyclase pathway involves pertussis toxin-resistant G \hat{l} ± protein subunits. Neuropharmacology, 2008, 54, 989-997.	2.0	14
36	Do Pharmacological Approaches that Prevent Opioid Tolerance Target Different Elements in the Same Regulatory Machinery?. Current Drug Abuse Reviews, 2008, 1, 222-238.	3.4	46

#	Article	IF	CITATIONS
37	Sumoylated RGS-Rz Proteins Act as Scaffolds for Mu-Opioid Receptors and G-Protein Complexes in Mouse Brain. Neuropsychopharmacology, 2007, 32, 842-850.	2.8	49
38	Morphine Induces Endocytosis of Neuronal \hat{l} /4-opioid Receptors Through the Sustained Transfer of G \hat{l} ± Subunits to RGSZ2 Proteins. Molecular Pain, 2007, 3, 1744-8069-3-19.	1.0	40
39	RGS14 prevents morphine from internalizing Mu-opioid receptors in periaqueductal gray neurons. Cellular Signalling, 2007, 19, 2558-2571.	1.7	33
40	Effector antagonism by the regulators of G protein signalling (RGS) proteins causes desensitization of mu-opioid receptors in the CNS. Psychopharmacology, 2005, 180, 1-11.	1.5	39
41	Expression of Neural RGS-R7 and $\hat{Gl^25}$ Proteins in Response to Acute and Chronic Morphine. Neuropsychopharmacology, 2005, 30, 99-110.	2.8	39
42	Activation of $\hat{l}\frac{1}{4}$ -Opioid Receptors Transfers Control of G $\hat{l}\pm$ Subunits to the Regulator of G-protein Signaling RGS9-2. Journal of Biological Chemistry, 2005, 280, 8951-8960.	1.6	73
43	The RGSZ2 Protein Exists in a Complex with $\hat{l}\frac{1}{4}$ -Opioid Receptors and Regulates the Desensitizing Capacity of Gz Proteins. Neuropsychopharmacology, 2005, 30, 1632-1648.	2.8	69
44	RGS-Rz and RGS9-2 proteins control mu-opioid receptor desensitisation in CNS: the role of activated Gî±z subunits. Neuropharmacology, 2005, 48, 134-150.	2.0	32
45	Morphine alters the selective association between mu-opioid receptors and specific RGS proteins in mouse periaqueductal gray matter. Neuropharmacology, 2005, 48, 853-868.	2.0	68
46	RGSZ1 and GAIP Regulate \hat{l} 4- but Not \hat{l} -Opioid Receptors in Mouse CNS: Role in Tachyphylaxis and Acute Tolerance. Neuropsychopharmacology, 2004, 29, 1091-1104.	2.8	59
47	The GBeta5 subunit that associates with the R7 subfamily of RGS proteins regulates mu-opioid effects. Neuropharmacology, 2003, 45, 82-95.	2.0	37