Kean Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/7712936/kean-wang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

78
papers

2,069
citations

h-index

84
ext. papers

28
h-index

5.4
avg, IF

L-index

#	Paper	IF	Citations
78	Hollow fiber membrane decorated with Ag/MWNTs: toward effective water disinfection and biofouling control. <i>ACS Nano</i> , 2011 , 5, 10033-40	16.7	193
77	Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions. Journal of Hazardous Materials, 2011 , 194, 162-8	12.8	138
76	Waste-cellulose-derived porous carbon adsorbents for methyl orange removal. <i>Chemical Engineering Journal</i> , 2019 , 371, 55-63	14.7	104
75	Covalent immobilization of nisin on multi-walled carbon nanotubes: superior antimicrobial and anti-biofilm properties. <i>Nanoscale</i> , 2011 , 3, 1874-80	7.7	92
74	Hydrogen storage in a Ni B nanoalloy-doped three-dimensional graphene material. <i>Energy and Environmental Science</i> , 2011 , 4, 195-200	35.4	90
73	A new model for the description of adsorption kinetics in heterogeneous activated carbon. <i>Carbon</i> , 1998 , 36, 1539-1554	10.4	88
72	Chitosan composites for biomedical applications: status, challenges and perspectives. <i>Materials Science and Technology</i> , 2008 , 24, 1053-1061	1.5	76
71	Characterization of a zeolite-templated carbon for H2 storage application. <i>Microporous and Mesoporous Materials</i> , 2009 , 118, 503-507	5.3	55
70	Metal-organic framework/graphene oxide composite fillers in mixed-matrix membranes for CO2 separation. <i>Materials Chemistry and Physics</i> , 2018 , 212, 513-522	4.4	51
69	Molecular-Ion-Imprinted Chitosan Hydrogels for the Selective Adsorption of Silver(I) in Aqueous Solution. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 11261-11265	3.9	48
68	Characterizing the Micropore Size Distribution of Activated Carbon Using Equilibrium Data of Many Adsorbates at Various Temperatures. <i>Langmuir</i> , 1997 , 13, 6226-6233	4	43
67	Hydrogen storage in Ni B nanoalloy-doped 2D graphene. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 12950-12954	6.7	41
66	Dual diffusion and finite mass exchange model for adsorption kinetics in activated carbon. <i>AICHE Journal</i> , 1998 , 44, 68-82	3.6	41
65	Chitosan membrane in separation applications. <i>Materials Science and Technology</i> , 2008 , 24, 1076-1087	1.5	40
64	An Ideal Absorbed Solution Theory (IAST) Study of Adsorption Equilibria of Binary Mixtures of Methane and Ethane on a Templated Carbon. <i>Journal of Chemical & Engineering Data</i> , 2011 , 56, 12	0 3 :8 121	2 ³⁹
63	Effect of operating conditions on the removal of Pb2+ by microporous titanosilicate ETS-10 in a fixed-bed column. <i>Journal of Colloid and Interface Science</i> , 2007 , 305, 218-25	9.3	39
62	Bovine Serum Albumin Adsorption on Gluteraldehyde Cross-Linked Chitosan Hydrogels. <i>Journal of Chemical & Chem</i>	2.8	38

(2018-1998)

61	Comparison of models on the prediction of binary equilibrium data of activated carbons. <i>AICHE Journal</i> , 1998 , 44, 740-752	3.6	38	
60	Methane storage in a template-synthesized carbon. <i>Separation and Purification Technology</i> , 2008 , 64, 124-126	8.3	36	
59	Modeling of the adsorption breakthrough behaviors of Pb2+ in a fixed bed of ETS-10 adsorbent. Journal of Colloid and Interface Science, 2008 , 325, 57-63	9.3	36	
58	Role of interface in dispersion and surface energetics of polymer nanocomposites containing hydrophilic POSS and layered silicates. <i>Journal of Colloid and Interface Science</i> , 2011 , 355, 222-30	9.3	35	
57	Surface functionalization-enhanced spillover effect on hydrogen storage of Ni B nanoalloy-doped activated carbon. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 13663-13668	6.7	33	
56	Low-Cost Carbon Nanospheres for Efficient Removal of Organic Dyes from Aqueous Solutions. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 13438-13444	3.9	32	
55	Nitrogen, Hydrogen, Carbon Dioxide, and Water Vapor Sorption Properties of Three-Dimensional Graphene. <i>Journal of Chemical & Engineering Data</i> , 2011 , 56, 642-645	2.8	32	
54	Pervaporation performance of novel chitosan-POSS hybrid membranes: Effects of POSS and operating conditions. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2010 , 48, 2185-2192	2.6	31	
53	The Fixed-Bed Study of Dye Removal on Chitosan Beads at High pH. <i>Industrial & Description of Chemistry Research</i> , 2008 , 47, 8796-8800	3.9	30	
52	Biosorption of chitin and chitosan. <i>Materials Science and Technology</i> , 2008 , 24, 1088-1099	1.5	30	
51	The structural characterization of carbon molecular sieve membrane (CMSM) via gas adsorption. <i>Journal of Membrane Science</i> , 2003 , 220, 177-182	9.6	28	
50	Using Local IAST with Micropore Size Distribution To Predict Multicomponent Adsorption Equilibrium of Gases in Activated Carbon. <i>Langmuir</i> , 2000 , 16, 1292-1298	4	28	
49	High-Pressure CO2 Adsorption on a Polymer-Derived Carbon Molecular Sieve. <i>Journal of Chemical & Engineering Data</i> , 2008 , 53, 2-4	2.8	24	
48	Study of Binary Adsorption Equilibrium of Hydrocarbons in Activated Carbon Using Micropore Size Distribution. <i>Langmuir</i> , 2000 , 16, 5130-5136	4	24	
47	Reversible hydrogen storage of multi-wall carbon nanotubes doped with atomically dispersed lithium. <i>Journal of Materials Chemistry</i> , 2010 , 20, 6490		23	
46	Methane storage in carbon pellets prepared via a binderless method. <i>Energy Conversion and Management</i> , 2011 , 52, 1258-1262	10.6	23	
45	Characterization and diffusion behavior of chitosan poss composite membranes. <i>Journal of Applied Polymer Science</i> , 2011 , 122, 427-435	2.9	22	
44	The separation of oil in water (O/W) emulsions using polyether sulfone & nitrocellulose microfiltration membranes. <i>Journal of Water Process Engineering</i> , 2018 , 25, 113-117	6.7	21	

43	Modified Chitosan Hydrogels for the Removal of Acid Dyes at High pH: Modification and Regeneration. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 6343-6346	3.9	21
42	Study of isosteric heat of adsorption and activation energy for surface diffusion of gases on activated carbon using equilibrium and kinetics information. <i>Separation and Purification Technology</i> , 2004 , 34, 165-176	8.3	21
41	Enhanced mechanical properties of novel chitosan nanocomposite fibers. <i>Carbohydrate Polymers</i> , 2011 , 86, 1151-1156	10.3	19
40	On the performance of HIAST and IAST in the prediction of multicomponent adsorption equilibria. <i>Separation and Purification Technology</i> , 2000 , 20, 243-249	8.3	19
39	Application of IAST in the Prediction of Multicomponent Adsorption Equilibrium of Gases in Heterogeneous Solids: Micropore Size Distribution versus Energy Distribution. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 527-532	3.9	18
38	The separation of GMP from milk whey using the modified chitosan beads. <i>Adsorption</i> , 2010 , 16, 85-91	2.6	17
37	Removal of phenolic contaminants from water by pervaporation. <i>Journal of Membrane Science</i> , 2021 , 623, 119043	9.6	14
36	Synthesizing Vitamin E Molecularly Imprinted Polymers via Precipitation Polymerization. <i>Journal of Chemical & Chemical &</i>	2.8	13
35	Investigation of surface properties of plasma-modified polyamide 6 and polyamide 6/layered silicate nanocomposites. <i>Journal of Materials Science</i> , 2011 , 46, 3084-3093	4.3	12
34	Adsorption Properties of the SAPO-5 Molecular Sieve. <i>Journal of Chemical & Data</i> , 2010, 55, 3286-3289	2.8	11
33	Predictions of Adsorption Equilibria of Nonpolar Hydrocarbons onto Activated Carbon. <i>Langmuir</i> , 1998 , 14, 7271-7277	4	10
32	Molecularly imprinted polymer microspheres prepared via the two-step swelling polymerization for the separation of lincomycin. <i>Journal of Applied Polymer Science</i> , 2019 , 136, 47938	2.9	9
31	Abrasion studies of nylon 6/montmorillonite nanocomposites using scanning electron microscopy, fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. <i>Journal of Applied Polymer Science</i> , 2009 , 113, 3286-3293	2.9	9
30	Selection of a practical assay for the determination of the entire range of acetyl content in chitin and chitosan: UV spectrophotometry with phosphoric acid as solvent. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2008 , 86, 558-68	3.5	9
29	The separation of oily water using low-cost natural materials: Review and development. <i>Chemosphere</i> , 2021 , 285, 131398	8.4	9
28	Surface functionalized carbon microspheres for the recovery of copper ion from refinery wastewater. <i>Korean Journal of Chemical Engineering</i> , 2018 , 35, 147-152	2.8	8
27	The structural characterization of a CMS membrane using Ar sorption and permeation. <i>Journal of Membrane Science</i> , 2009 , 335, 1-4	9.6	8
26	CO2 Permeation in Carbon Membranes with Different Degrees of Carbonization. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 1402-1407	3.9	8

(2018-2013)

25	The structural development of zeolite-templated carbon under pyrolysis. <i>Journal of Analytical and Applied Pyrolysis</i> , 2013 , 100, 153-157	6	7	
24	UV-TiO2 treatment of the cooling water of an oil refinery. <i>Journal of Water Process Engineering</i> , 2018 , 26, 176-181	6.7	7	
23	Synthesis and characterization of activated carbons prepared from benzene CVD on zeolite Y. <i>Journal of Porous Materials</i> , 2012 , 19, 211-215	2.4	6	
22	Equilibria and kinetics characterisation of two different structured nutshell-derived activated carbons. <i>Adsorption</i> , 1997 , 3, 267-275	2.6	6	
21	The importance of finite adsorption kinetics in the sorption of hydrocarbon gases onto a nutshell-derived activated carbon. <i>Chemical Engineering Science</i> , 2007 , 62, 6836-6842	4.4	6	
20	Discrimination of Adsorption Kinetic Models for the Description of Hydrocarbon Adsorption in Activated Carbon. <i>Adsorption</i> , 2001 , 7, 51-63	2.6	6	
19	Preparation and morphology study of carbon molecular sieve membrane derived from polyimide. <i>Canadian Journal of Chemical Engineering</i> , 2017 , 95, 1993-1998	2.3	5	
18	Energy gas storage in template-synthesized carbons with different porous structures. <i>Canadian Journal of Chemical Engineering</i> , 2015 , 93, 527-531	2.3	5	
17	How Sensitive Is the Elasticity of Hydroxyapatite-Nanoparticle-Reinforced Chitosan Composite to Changes in Particle Concentration and Crystallization Temperature?. <i>Journal of Functional Biomaterials</i> , 2015 , 6, 986-98	4.8	5	
16	Adsorption kinetics of methane on a template-synthesized carbon powder and its pellet. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2011 , 6, 294-300	1.3	5	
15	Sorption Properties of a Single Wall Carbon Nanotube. <i>Journal of Chemical & Data</i> , 2008 , 53, 2451-2453	2.8	5	
14	Permeation time lag in polymeric hollow fiber membranes. <i>Journal of Membrane Science</i> , 2006 , 283, 4.	25 4 89	4	
13	Gas permeation in hollow fiber membranes with nonlinear sorption isotherm and concentration dependent diffusion coefficient. <i>Journal of Membrane Science</i> , 2005 , 267, 99-103	9.6	4	
12	Sorption Equilibria and Kinetics of Hydrocarbons onto Activated Carbon Samples Having Different Micropore Size Distributions. <i>Adsorption</i> , 1999 , 5, 25-37	2.6	4	
11	Salt-free synthesis of Cu-BTC metal-organic framework exhibiting mesoporosity and enhanced carbon dioxide adsorption. <i>Microporous and Mesoporous Materials</i> , 2021 , 324, 111265	5.3	4	
10	A Comparative Analysis of the Reinforcing Efficiency of Silsesquioxane Nanoparticles versus Apatite Nanoparticles in Chitosan Biocomposite Fibres. <i>Journal of Composites Science</i> , 2017 , 1, 9	3	3	
9	Diffusion anomaly and blind pore character in carbon molecular sieve membrane. <i>Chemical Engineering Science</i> , 2007 , 62, 3654-3659	4.4	3	
8	The Ideal selectivity Ivs Irue selectivity If or permeation of gas mixture in nanoporous membranes. **IOP Conference Series: Materials Science and Engineering, 2018, 323, 012002	0.4	2	

7	The equilibrium and fixed-bed study of malachite green adsorption on chitosan hydrogels. <i>Water Science and Technology</i> , 2019 , 79, 1571-1579	2.2	1
6	Carbon Spheres for the Removal of Hevay Metal Ions From Refinery Effluents. <i>Journal of Chemical Engineering Research Updates</i> , 2014 , 1, 35-45	0.3	1
5	Carbon molecular sieve membranes for natural gas purification: Role of surface flow. <i>Canadian Journal of Chemical Engineering</i> , 2020 , 98, 775-784	2.3	1
4	Measuring the permeabilities of binary gas mixtures with a novel time-lag technique. <i>Canadian Journal of Chemical Engineering</i> ,	2.3	1
3	Synthesizing molecularly imprinted polymer beads for the purification of vitamin E. <i>Particuology</i> , 2021 , 57, 10-18	2.8	1
2	Synthesis of novel hybrid films of a layered silicate and alkylammonium cations on rough polymeric surfaces by Langmuir-Blodgett method. <i>Journal of Colloid and Interface Science</i> , 2009 , 340, 249-53	9.3	

Energy Gas Storage in Porous Polymers215-248