
Julien Pompon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7712824/publications.pdf Version: 2024-02-01

ILLIEN POMDON

#	Article	IF	CITATIONS
1	Dengue virus infection modifies mosquito blood-feeding behavior to increase transmission to the host. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	18
2	Y-Box Binding Protein 1 Interacts with Dengue Virus Nucleocapsid and Mediates Viral Assembly. MBio, 2022, 13, e0019622.	1.8	4
3	Mayaro Virus Infects Human Brain Cells and Induces a Potent Antiviral Response in Human Astrocytes. Viruses, 2021, 13, 465.	1.5	9
4	New Insights into the Biology of the Emerging Tembusu Virus. Pathogens, 2021, 10, 1010.	1.2	17
5	Delineating the Role of Aedes aegypti ABC Transporter Gene Family during Mosquito Development and Arboviral Infection via Transcriptome Analyses. Pathogens, 2021, 10, 1127.	1.2	9
6	Favipiravir Inhibits Mayaro Virus Infection in Mice. Viruses, 2021, 13, 2213.	1.5	2
7	Lipid Interactions Between Flaviviruses and Mosquito Vectors. Frontiers in Physiology, 2021, 12, 763195.	1.3	6
8	High resolution proteomics of Aedes aegypti salivary glands infected with either dengue, Zika or chikungunya viruses identify new virus specific and broad antiviral factors. Scientific Reports, 2021, 11, 23696.	1.6	20
9	The RNA binding protein Quaking represses host interferon response by downregulating MAVS. RNA Biology, 2020, 17, 366-380.	1.5	10
10	Trends of the Dengue Serotype-4 Circulation with Epidemiological, Phylogenetic, and Entomological Insights in Lao PDR between 2015 and 2019. Pathogens, 2020, 9, 728.	1.2	12
11	Mosquito metabolomics reveal that dengue virus replication requires phospholipid reconfiguration via the remodeling cycle. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27627-27636.	3.3	23
12	JNK pathway restricts DENV2, ZIKV and CHIKV infection by activating complement and apoptosis in mosquito salivary glands. PLoS Pathogens, 2020, 16, e1008754.	2.1	44
13	Mayaro Virus Pathogenesis and Transmission Mechanisms. Pathogens, 2020, 9, 738.	1.2	59
14	Highly Efficient Vertical Transmission for Zika Virus in Aedes aegypti after Long Extrinsic Incubation Time. Pathogens, 2020, 9, 366.	1.2	9
15	Cancer and mosquitoes – An unsuspected close connection. Science of the Total Environment, 2020, 743, 140631.	3.9	3
16	Title is missing!. , 2020, 16, e1008754.		0
17	Title is missing!. , 2020, 16, e1008754.		0
18	Title is missing!. , 2020, 16, e1008754.		0

JULIEN POMPON

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 16, e1008754.		Ο
20	Title is missing!. , 2020, 16, e1008754.		0
21	Title is missing!. , 2020, 16, e1008754.		0
22	A T164S mutation in the dengue virus NS1 protein is associated with greater disease severity in mice. Science Translational Medicine, 2019, 11, .	5.8	32
23	A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus. PLoS Neglected Tropical Diseases, 2019, 13, e0007783.	1.3	11
24	Differential Susceptibility and Innate Immune Response of Aedes aegypti and Aedes albopictus to the Haitian Strain of the Mayaro Virus. Viruses, 2019, 11, 924.	1.5	21
25	Increased Mosquito Midgut Infection by Dengue Virus Recruitment of Plasmin Is Blocked by an Endogenous Kazal-type Inhibitor. IScience, 2019, 21, 564-576.	1.9	10
26	Phylogenetic analysis revealed the co-circulation of four dengue virus serotypes in Southern Thailand. PLoS ONE, 2019, 14, e0221179.	1.1	31
27	Mosquito microevolution drives Plasmodium falciparum dynamics. Nature Microbiology, 2019, 4, 941-947.	5.9	18
28	Dengue virus reduces AGPAT1Âexpression to alter phospholipids and enhance infection in Aedes aegypti. PLoS Pathogens, 2019, 15, e1008199.	2.1	19
29	A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus. , 2019, 13, e0007783.		0
30	A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus. , 2019, 13, e0007783.		0
31	A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus. , 2019, 13, e0007783.		0
32	A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus. , 2019, 13, e0007783.		0
33	Title is missing!. , 2019, 15, e1008199.		Ο
34	Title is missing!. , 2019, 15, e1008199.		0
35	Title is missing!. , 2019, 15, e1008199.		0
36	Title is missing!. , 2019, 15, e1008199.		0

Julien Pompon

#	Article	IF	CITATIONS
37	Title is missing!. , 2019, 15, e1008199.		Ο
38	Title is missing!. , 2019, 15, e1008199.		0
39	Biochemistry and Molecular Biology of Flaviviruses. Chemical Reviews, 2018, 118, 4448-4482.	23.0	211
40	Flaviviruses Produce a Subgenomic Flaviviral RNA That Enhances Mosquito Transmission. DNA and Cell Biology, 2018, 37, 154-159.	0.9	21
41	Identification and characterization of host proteins bound to dengue virus 3′ UTR reveal an antiviral role for quaking proteins. Rna, 2018, 24, 803-814.	1.6	31
42	A systematic approach to the development of a safe live attenuated Zika vaccine. Nature Communications, 2018, 9, 1031.	5.8	35
43	Zika virus infection modulates the metabolomic profile of microglial cells. PLoS ONE, 2018, 13, e0206093.	1.1	52
44	African and Asian Zika virus strains differentially induce early antiviral responses in primary human astrocytes. Infection, Genetics and Evolution, 2017, 49, 134-137.	1.0	61
45	A Zika virus from America is more efficiently transmitted than an Asian virus by Aedes aegypti mosquitoes from Asia. Scientific Reports, 2017, 7, 1215.	1.6	61
46	Definition of a RACK1 Interaction Network in <i>Drosophila melanogaster</i> Using SWATH-MS. G3: Genes, Genomes, Genetics, 2017, 7, 2249-2258.	0.8	7
47	RPLP1 and RPLP2 Are Essential Flavivirus Host Factors That Promote Early Viral Protein Accumulation. Journal of Virology, 2017, 91, .	1.5	60
48	Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission. PLoS Pathogens, 2017, 13, e1006535.	2.1	101
49	Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities. PLoS Neglected Tropical Diseases, 2017, 11, e0005667.	1.3	18
50	The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender- and swarm-enriched microbial biomarkers. Scientific Reports, 2016, 6, 24207.	1.6	93
51	Zika virus: epidemiology, clinical features and host-virus interactions. Microbes and Infection, 2016, 18, 441-449.	1.0	84
52	RNA: Jack of All Trades and Master of All. Cell, 2015, 160, 579-580.	13.5	3
53	A New Role of the Mosquito Complement-like Cascade in Male Fertility in Anopheles gambiae. PLoS Biology, 2015, 13, e1002255.	2.6	53
54	Evidence of natural Wolbachia infections in field populations of Anopheles gambiae. Nature Communications, 2014, 5, 3985.	5.8	142

Julien Pompon

#	Article	IF	CITATIONS
55	Potato Resistance Against Insect Herbivores. , 2013, , 439-462.		11
56	AP-1/Fos-TGase2 Axis Mediates Wounding-induced Plasmodium falciparum Killing in Anopheles gambiae. Journal of Biological Chemistry, 2013, 288, 16145-16154.	1.6	22
57	Changes in aphid probing behaviour as a function of insect age and plant resistance level. Bulletin of Entomological Research, 2012, 102, 550-557.	0.5	9
58	Genetic clonality of Plasmodium falciparum affects the outcome of infection in Anopheles gambiae. International Journal for Parasitology, 2012, 42, 589-595.	1.3	44
59	A phloem-sap feeder mixes phloem and xylem sap to regulate osmotic potential. Journal of Insect Physiology, 2011, 57, 1317-1322.	0.9	98
60	Resistance Level to an Aphid Potato Pest Varies Between Genotypes From the Same Solanum Accession. Journal of Economic Entomology, 2011, 104, 1075-1079.	0.8	6
61	Role of xylem consumption on osmoregulation in Macrosiphum euphorbiae (Thomas). Journal of Insect Physiology, 2010, 56, 610-615.	0.9	59
62	Characterization of Solanum chomatophilum resistance to 2 aphid potato pests, Macrosiphum euphorbiae (Thomas) and Myzus persicae (Sulzer). Crop Protection, 2010, 29, 891-897.	1.0	11
63	Biological performance of <i>Myzus persicae</i> and <i>Macrosiphum euphorbiae</i> (Homoptera:) Tj ETQq1 I	l 0.784314 1.3	rgß /Overla
64	Role of hostâ€plant selection in resistance of wild <i>Solanum</i> species to <i>Macrosiphum</i>	0.7	19

⁶⁴ euphorbiae</i> and <i>Myzus persicae</i> . Entomologia Experimentalis Et Applicata, 2010, 137, 73-85.