Julien Pompon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7712824/publications.pdf

Version: 2024-02-01

64 1,723 19 38 papers citations h-index g-index

68 68 68 2632 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Biochemistry and Molecular Biology of Flaviviruses. Chemical Reviews, 2018, 118, 4448-4482.	23.0	211
2	Evidence of natural Wolbachia infections in field populations of Anopheles gambiae. Nature Communications, 2014, 5, 3985.	5.8	142
3	Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission. PLoS Pathogens, 2017, 13, e1006535.	2.1	101
4	A phloem-sap feeder mixes phloem and xylem sap to regulate osmotic potential. Journal of Insect Physiology, 2011, 57, 1317-1322.	0.9	98
5	The reproductive tracts of two malaria vectors are populated by a core microbiome and by genderand swarm-enriched microbial biomarkers. Scientific Reports, 2016, 6, 24207.	1.6	93
6	Zika virus: epidemiology, clinical features and host-virus interactions. Microbes and Infection, 2016, 18, 441-449.	1.0	84
7	African and Asian Zika virus strains differentially induce early antiviral responses in primary human astrocytes. Infection, Genetics and Evolution, 2017, 49, 134-137.	1.0	61
8	A Zika virus from America is more efficiently transmitted than an Asian virus by Aedes aegypti mosquitoes from Asia. Scientific Reports, 2017, 7, 1215.	1.6	61
9	RPLP1 and RPLP2 Are Essential Flavivirus Host Factors That Promote Early Viral Protein Accumulation. Journal of Virology, 2017, 91, .	1.5	60
10	Role of xylem consumption on osmoregulation in Macrosiphum euphorbiae (Thomas). Journal of Insect Physiology, 2010, 56, 610-615.	0.9	59
11	Mayaro Virus Pathogenesis and Transmission Mechanisms. Pathogens, 2020, 9, 738.	1.2	59
12	A New Role of the Mosquito Complement-like Cascade in Male Fertility in Anopheles gambiae. PLoS Biology, 2015, 13, e1002255.	2.6	53
13	Zika virus infection modulates the metabolomic profile of microglial cells. PLoS ONE, 2018, 13, e0206093.	1.1	52
14	Genetic clonality of Plasmodium falciparum affects the outcome of infection in Anopheles gambiae. International Journal for Parasitology, 2012, 42, 589-595.	1.3	44
15	JNK pathway restricts DENV2, ZIKV and CHIKV infection by activating complement and apoptosis in mosquito salivary glands. PLoS Pathogens, 2020, 16, e1008754.	2.1	44
16	A systematic approach to the development of a safe live attenuated Zika vaccine. Nature Communications, 2018, 9, 1031.	5.8	35
17	A T164S mutation in the dengue virus NS1 protein is associated with greater disease severity in mice. Science Translational Medicine, 2019, 11, .	5.8	32
18	Identification and characterization of host proteins bound to dengue virus 3′ UTR reveal an antiviral role for quaking proteins. Rna, 2018, 24, 803-814.	1.6	31

#	Article	lF	Citations
19	Phylogenetic analysis revealed the co-circulation of four dengue virus serotypes in Southern Thailand. PLoS ONE, 2019, 14, e0221179.	1.1	31
20	Mosquito metabolomics reveal that dengue virus replication requires phospholipid reconfiguration via the remodeling cycle. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27627-27636.	3.3	23
21	AP-1/Fos-TGase2 Axis Mediates Wounding-induced Plasmodium falciparum Killing in Anopheles gambiae. Journal of Biological Chemistry, 2013, 288, 16145-16154.	1.6	22
22	Flaviviruses Produce a Subgenomic Flaviviral RNA That Enhances Mosquito Transmission. DNA and Cell Biology, 2018, 37, 154-159.	0.9	21
23	Differential Susceptibility and Innate Immune Response of Aedes aegypti and Aedes albopictus to the Haitian Strain of the Mayaro Virus. Viruses, 2019, 11, 924.	1.5	21
24	High resolution proteomics of Aedes aegypti salivary glands infected with either dengue, Zika or chikungunya viruses identify new virus specific and broad antiviral factors. Scientific Reports, 2021, 11, 23696.	1.6	20
25	Role of hostâ€plant selection in resistance of wild <i>Solanum</i> species to <i>Macrosiphum euphorbiae</i> and <i>Myzus persicae</i> Entomologia Experimentalis Et Applicata, 2010, 137, 73-85.	0.7	19
26	Dengue virus reduces AGPAT1Âexpression to alter phospholipids and enhance infection in Aedes aegypti. PLoS Pathogens, 2019, 15, e1008199.	2.1	19
27	Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities. PLoS Neglected Tropical Diseases, 2017, 11, e0005667.	1.3	18
28	Mosquito microevolution drives Plasmodium falciparum dynamics. Nature Microbiology, 2019, 4, 941-947.	5.9	18
29	Dengue virus infection modifies mosquito blood-feeding behavior to increase transmission to the host. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	18
30	New Insights into the Biology of the Emerging Tembusu Virus. Pathogens, 2021, 10, 1010.	1.2	17
31	Biological performance of <i>Myzus persicae</i> and <i>Macrosiphum euphorbiae</i> (Homoptera:) Tj ETQq1 1	0.784314 1.3	$rac{1}{15}$ rgBT /Overlo
32	Trends of the Dengue Serotype-4 Circulation with Epidemiological, Phylogenetic, and Entomological Insights in Lao PDR between 2015 and 2019. Pathogens, 2020, 9, 728.	1.2	12
33	Characterization of Solanum chomatophilum resistance to 2 aphid potato pests, Macrosiphum euphorbiae (Thomas) and Myzus persicae (Sulzer). Crop Protection, 2010, 29, 891-897.	1.0	11
34	Potato Resistance Against Insect Herbivores. , 2013, , 439-462.		11
35	A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus. PLoS Neglected Tropical Diseases, 2019, 13, e0007783.	1.3	11
36	Increased Mosquito Midgut Infection by Dengue Virus Recruitment of Plasmin Is Blocked by an Endogenous Kazal-type Inhibitor. IScience, 2019, 21, 564-576.	1.9	10

#	Article	IF	Citations
37	The RNA binding protein Quaking represses host interferon response by downregulating MAVS. RNA Biology, 2020, 17, 366-380.	1.5	10
38	Changes in aphid probing behaviour as a function of insect age and plant resistance level. Bulletin of Entomological Research, 2012, 102, 550-557.	0.5	9
39	Highly Efficient Vertical Transmission for Zika Virus in Aedes aegypti after Long Extrinsic Incubation Time. Pathogens, 2020, 9, 366.	1.2	9
40	Mayaro Virus Infects Human Brain Cells and Induces a Potent Antiviral Response in Human Astrocytes. Viruses, 2021, 13, 465.	1.5	9
41	Delineating the Role of Aedes aegypti ABC Transporter Gene Family during Mosquito Development and Arboviral Infection via Transcriptome Analyses. Pathogens, 2021, 10, 1127.	1.2	9
42	Definition of a RACK1 Interaction Network in <i>Drosophila melanogaster</i> Using SWATH-MS. G3: Genes, Genomes, Genetics, 2017, 7, 2249-2258.	0.8	7
43	Resistance Level to an Aphid Potato Pest Varies Between Genotypes From the Same Solanum Accession. Journal of Economic Entomology, 2011, 104, 1075-1079.	0.8	6
44	Lipid Interactions Between Flaviviruses and Mosquito Vectors. Frontiers in Physiology, 2021, 12, 763195.	1.3	6
45	Y-Box Binding Protein 1 Interacts with Dengue Virus Nucleocapsid and Mediates Viral Assembly. MBio, 2022, 13, e0019622.	1.8	4
46	RNA: Jack of All Trades and Master of All. Cell, 2015, 160, 579-580.	13.5	3
47	Cancer and mosquitoes – An unsuspected close connection. Science of the Total Environment, 2020, 743, 140631.	3.9	3
48	Favipiravir Inhibits Mayaro Virus Infection in Mice. Viruses, 2021, 13, 2213.	1.5	2
49	A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus. , 2019, 13, e0007783.		0
50	A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus., 2019, 13, e0007783.		0
51	A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus. , 2019, 13, e0007783.		0
52	A peridomestic Aedes malayensis population in Singapore can transmit yellow fever virus., 2019, 13, e0007783.		0
53	Title is missing!. , 2019, 15, e1008199.		0
54	Title is missing!. , 2019, 15, e1008199.		0

#	Article	IF	CITATIONS
55	Title is missing!. , 2019, 15, e1008199.		O
56	Title is missing!. , 2019, 15, e1008199.		0
57	Title is missing!. , 2019, 15, e1008199.		O
58	Title is missing!. , 2019, 15, e1008199.		0
59	Title is missing!. , 2020, 16, e1008754.		O
60	Title is missing!. , 2020, 16, e1008754.		0
61	Title is missing!. , 2020, 16, e1008754.		O
62	Title is missing!. , 2020, 16, e1008754.		0
63	Title is missing!. , 2020, 16, e1008754.		O
64	Title is missing!. , 2020, 16, e1008754.		0