
Christian Grillet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7712781/publications.pdf Version: 2024-02-01

CHDISTIAN CDILLET

#	Article	IF	CITATIONS
1	Mid-infrared supercontinuum generation in a varying dispersion waveguide for multi-species gas spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2023, , 1-10.	2.9	7
2	Mid-infrared supercontinuum generation in a low-loss germanium-on-silicon waveguide. APL Photonics, 2021, 6, .	5.7	31
3	Mid-infrared Octave-spanning Supercontinuum Generation in an All-normal Dispersion SiGe Waveguide. , 2021, , .		0
4	Mid-Infrared Supercontinuum Generation in a Pure Germanium-on-Silicon Ridge Waveguide. , 2021, , .		0
5	Mid-Infrared Supercontinuum Generation in Germanium Waveguides. , 2021, , .		0
6	High Coherence at <i>f</i> and 2 <i>f</i> of Mid-Infrared Supercontinuum Generation in Silicon Germanium Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-8.	2.9	18
7	Enhanced Fourâ€Wave Mixing in Silicon Nitride Waveguides Integrated with 2D Layered Graphene Oxide Films. Advanced Optical Materials, 2020, 8, 2001048.	7.3	52
8	Mid-infrared supercontinuum generation in silicon-germanium all-normal dispersion waveguides. Optics Letters, 2020, 45, 5008.	3.3	34
9	Coherent Mid-Infrared Supercontinuum Sources in SiliconGermanium Waveguides. , 2020, , .		0
10	Coherent mid-infrared supercontinuum generation for pulse compression in a silicon-based chip. , 2020, , .		0
11	Experimental Mid-Infrared Supercontinuum Generation in a Germanium on Silicon Waveguide. , 2020, , .		0
12	Mid-Infrared Supercontinuum Generation in Germanium-on-Silicon Waveguides. , 2020, , .		0
13	Enhanced FWM in SiN nanowires integrated with 2D graphene oxide films. , 2020, , .		0
14	Low-noise mid-infrared supercontinuum generation in a silicon-based chip. , 2020, , .		0
15	Ultrafast saturable absorption dynamics in hybrid graphene/Si ₃ N ₄ waveguides. APL Photonics, 2019, 4, 076102.	5.7	50
16	Dispersion trimming for mid-infrared supercontinuum generation in a hybrid chalcogenide/silicon-germanium waveguide. Journal of the Optical Society of America B: Optical Physics, 2019, 36, A98.	2.1	30
17	Tailoring the Dispersion of a Hybrid Chalcogenide/Silicon-Germanium Waveguide for Mid-Infrared Supercontinuum Generation. , 2019, , .		1
18	Mid-infrared octave spanning supercontinuum generation to 85  μm in silicon-germanium waveguides. Optica, 2018, 5, 360.	9.3	122

#	Article	IF	CITATIONS
19	Toward mid-infrared nonlinear optics applications of silicon carbide microdisks engineered by lateral under-etching [Invited]. Photonics Research, 2018, 6, B74.	7.0	9
20	Nonlinear integrated photonics. Photonics Research, 2018, 6, NIP1.	7.0	8
21	Silicon Carbide Microdisk on Silicon Pillar Probed by Evanescent Coupling. , 2016, , .		2
22	Positive and negative phototunability of chalcogenide (AMTIR-1) microdisk resonator. Optics Express, 2015, 23, 8681.	3.4	21
23	Midinfrared supercontinuum generation from 2 to 6  μm in a silicon nanowire. Optica, 2015, 2, 797.	9.3	164
24	Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide. Nature Communications, 2014, 5, 3246.	12.8	79
25	Measurement of photosynthesis and photosynthetic efficiency in two diatoms. New Zealand Journal of Botany, 2014, 52, 6-27.	1.1	17
26	Light transmission of the marine diatom Coscinodiscus wailesii. , 2012, , .		11
27	Reconfigurable photonic crystal waveguides created by selective liquid infiltration. Optics Express, 2012, 20, 11046.	3.4	46
28	Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability. Optics Express, 2012, 20, 22609.	3.4	99
29	Integrated optical auto-correlator based on THG in a silicon photonic crystal waveguide. , 2012, , .		0
30	Slow-light dispersion engineering of photonic crystal waveguides using selective microfluidic infiltration. Optics Letters, 2012, 37, 4215.	3.3	26
31	<i>In situ</i> optofluidic control of reconfigurable photonic crystal cavities. Applied Physics Letters, 2012, 100, 261107.	3.3	16
32	Characteristics of Correlated Photon Pairs Generated in Ultracompact Silicon Slow-Light Photonic Crystal Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1676-1683.	2.9	23
33	Ultra-compact integrated optical auto-correlator based on third-harmonic generation in Si photonic crystal waveguides. , 2012, , .		0
34	Improved CAR and noise analysis for photon-pair generation in an ultra-compact silicon slow-light photonic crystal waveguide. , 2011, , .		1
35	Measuring the dispersive properties of liquids using a microinterferometer. Applied Optics, 2011, 50, 2408.	2.1	15
36	Low propagation loss silicon-on-sapphire waveguides for the mid-infrared. Optics Express, 2011, 19, 15212.	3.4	136

#	Article	IF	CITATIONS
37	Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides. Optics Letters, 2011, 36, 2818.	3.3	28
38	Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide. Optics Letters, 2011, 36, 3413.	3.3	130
39	Third-harmonic generation in engineered slow light photonic crystal waveguides in chalcogenide glasses. , 2011, , .		0
40	All-optical signal processing using slow light enhanced nonlinearities in silicon waveguides. , 2011, , .		0
41	Correlated Photon-Pair Generation in an Ultra-Compact Silicon Photonic Crystal Waveguide. , 2011, , .		0
42	Four-wave mixing in short silicon slow-light engineered photonic crystal waveguides. , 2011, , .		0
43	Waveguide-based optofluidics. Proceedings of SPIE, 2010, , .	0.8	3
44	Slow Light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 344-356.	2.9	132
45	Reconfigurable photonic crystal circuits. Laser and Photonics Reviews, 2010, 4, 192-204.	8.7	35
46	Chalcogenide glass photonic crystals: progress and prospects. Proceedings of SPIE, 2010, , .	0.8	3
47	Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics. Optics Express, 2010, 18, 6831.	3.4	54
48	Optical signal processing on a silicon chip at 640Gb/s using slow-light. Optics Express, 2010, 18, 7770.	3.4	138
49	Four-wave mixing in slow light engineered silicon photonic crystal waveguides. Optics Express, 2010, 18, 22915.	3.4	134
50	Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities. Optics Express, 2010, 18, 26695.	3.4	21
51	Liquid crystal dynamics in a photonic crystal cavity created by selective microfluidic infiltration. Optics Express, 2010, 18, 27280.	3.4	21
52	Slow-light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides. Progress in Electromagnetics Research Symposium: [proceedings] Progress in Electromagnetics Research Symposium, 2010, 6, 273-278.	0.4	1
53	The Evolution of Photoinduced Photonic Crystal Cavities During Writing. , 2010, , .		0
54	An Expanded k-Space Evanescent Coupling Technique for Characterizing Photonic Crystal Waveguides. , 2009, , .		0

4

#	Article	IF	CITATIONS
55	Photoinduced high-Q cavities in chalcogenide photonic crystals. , 2009, , .		0
56	High-Q photonic crystal chalcogenide cavities by photosensitive post processing. , 2009, , .		0
57	Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nature Photonics, 2009, 3, 206-210.	31.4	503
58	Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals. Optics Letters, 2009, 34, 3671.	3.3	36
59	Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration. Optics Express, 2009, 17, 1628.	3.4	121
60	Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides. Optics Express, 2009, 17, 2944.	3.4	221
61	A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration. Optics Express, 2009, 17, 18340.	3.4	57
62	Reconfigurable optofluidic silicon-based photonic crystal components. Proceedings of SPIE, 2009, , .	0.8	0
63	Optofluidics: a novel generation of reconfigurable and adaptive compact architectures. Microfluidics and Nanofluidics, 2008, 4, 81-95.	2.2	73
64	Chalcogenide glass photonic crystals. Photonics and Nanostructures - Fundamentals and Applications, 2008, 6, 3-11.	2.0	48
65	High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures. Optics Letters, 2008, 33, 2206.	3.3	47
66	Characterizing photonic crystal waveguides with an expanded k-space evanescent coupling technique. Optics Express, 2008, 16, 13800.	3.4	31
67	Reconfigurable microfluidic photonic crystal slab cavities. Optics Express, 2008, 16, 15887.	3.4	65
68	Microfluidic cavities in silicon-based photonic crystal slab waveguides. , 2008, , .		0
69	Photo-induced cavities in chalcogenide photonic crystals. , 2008, , .		0
70	Reconfigurable silicon-based photonic crystal components using microfluidics. , 2008, , .		0
71	Fiber taper coupling to chalcogenide microsphere modes. Applied Physics Letters, 2008, 92, 171109.	3.3	56

72 Reconfigurable microfluidic photonic crystal cavities. , 2008, , .

0

#	Article	IF	CITATIONS
73	Microfluidic photonic crystal double heterostructures. Applied Physics Letters, 2007, 91, .	3.3	65
74	Nanowire Coupling to Photonic Crystal nanocavities for Single Photon Sources. , 2007, , .		0
75	Tuning of Photonic Crystal Nanocavity Resonances. , 2007, , .		0
76	Photosensitive post-tuning of chalcogenide photonic crystal waveguides. , 2007, , .		0
77	Microfluidic photonic crystal nanocavities. , 2007, , .		О
78	Nanowire coupling to photonic crystal nanocavities for single photon sources. Optics Express, 2007, 15, 1267.	3.4	56
79	Photosensitive post tuning of chalcogenide photonic crystal waveguides. Optics Express, 2007, 15, 1277.	3.4	81
80	Nanowire coupling to photonic crystal nanocavities for single photon sources. , 2007, , .		1
81	Frontiers in microphotonics: tunability and all-optical control. Laser Physics Letters, 2007, 4, 177-186.	1.4	22
82	Characterisation of chalcogenide 2D photonic crystal waveguides and nanocavities using silica fibre nanowires. Physica B: Condensed Matter, 2007, 394, 289-292.	2.7	6
83	2D Nonlinear Photonic Crystals Nanocavities in Chalcogenide for All-optical Processing. Progress in Electromagnetics Research Symposium: [proceedings] Progress in Electromagnetics Research Symposium, 2007, 3, 308-310.	0.4	0
84	Nonlinear photonic crystals in chalcogenide for all-optical processing. , 2006, , .		0
85	Characterization and modeling of Fano resonances in chalcogenide photonic crystal membranes. Optics Express, 2006, 14, 369.	3.4	61
86	Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires. Optics Express, 2006, 14, 1070.	3.4	77
87	Micron-scale tunability in photonic devices using microfluidics. , 2006, 6329, 24.		2
88	Coupling via Tapered Nanowire Micro-Loops to Photonic Crystal Nanocavities for Single-Photon Source Applications. , 2006, , .		0
89	Coupling to Ultra-small Nanocavities for Single-Photon Source Applications via Tapered Nanowire Micro-loops. , 2006, , .		Ο
90	Characterization and modeling of Fano resonances in chalcogenide glass photonic crystal membranes. , 2006, , .		0

#	Article	IF	CITATIONS
91	Laboratory post-engineering of microstructured optical fibers. Progress in Optics, 2005, 48, 1-34.	0.6	2
92	Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section. Optics Express, 2005, 13, 3037.	3.4	29
93	Compact tunable microfluidic interferometer. Optics Express, 2004, 12, 5440.	3.4	60
94	Low loss single line photonic crystal waveguide on InP membrane. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 472-474.	2.7	2
95	Propagation losses of the fundamental mode in a single line-defect photonic crystal waveguide on an InP membrane. Journal of Applied Physics, 2002, 92, 2227-2234.	2.5	25
96	Optical coupling between a two-dimensional photonic crystal-based microcavity and single-line defect waveguide on InP membranes. IEEE Journal of Quantum Electronics, 2002, 38, 811-815.	1.9	15
97	Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes. Applied Physics Letters, 2001, 79, 2312-2314.	3.3	115