Jieshan Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/771255/publications.pdf

Version: 2024-02-01

390 papers 33,923 citations

94 h-index 167 g-index

400 all docs

400 docs citations

400 times ranked

28520 citing authors

#	Article	IF	CITATIONS
1	Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16676-16681.	7.1	1,713
2	Ultralight and Highly Compressible Graphene Aerogels. Advanced Materials, 2013, 25, 2219-2223.	21.0	1,249
3	Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells. Journal of Physical Chemistry B, 2003, 107, 6292-6299.	2.6	1,079
4	Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nature Communications, 2014, 5, 5002.	12.8	892
5	Metal–Organicâ€Frameworkâ€Derived Hybrid Carbon Nanocages as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution. Advanced Materials, 2017, 29, 1700874.	21.0	678
6	Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy and Environmental Science, 2016, 9, 1299-1307.	30.8	623
7	Sustainable Synthesis and Assembly of Biomassâ€Derived B/N Coâ€Doped Carbon Nanosheets with Ultrahigh Aspect Ratio for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2016, 26, 111-119.	14.9	607
8	Stabilizing the MXenes by Carbon Nanoplating for Developing Hierarchical Nanohybrids with Efficient Lithium Storage and Hydrogen Evolution Capability. Advanced Materials, 2017, 29, 1607017.	21.0	583
9	High performance hybrid solar cells sensitized by organolead halide perovskites. Energy and Environmental Science, 2013, 6, 1480.	30.8	582
10	Design and fabrication of carbon dots for energy conversion and storage. Chemical Society Reviews, 2019, 48, 2315-2337.	38.1	552
11	Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy, 2018, 44, 181-190.	16.0	458
12	Aggregation-Resistant 3D MXene-Based Architecture as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Nano, 2018, 12, 8017-8028.	14.6	425
13	High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy, 2019, 66, 104132.	16.0	344
14	A Layeredâ€Nanospaceâ€Confinement Strategy for the Synthesis of Twoâ€Dimensional Porous Carbon Nanosheets for Highâ€Rate Performance Supercapacitors. Advanced Energy Materials, 2015, 5, 1401761.	19.5	308
15	Ultrafine MoO ₂ arbon Microstructures Enable Ultralongâ€Life Powerâ€Type Sodium Ion Storage by Enhanced Pseudocapacitance. Advanced Energy Materials, 2017, 7, 1602880.	19.5	306
16	Superhierarchical Cobaltâ€Embedded Nitrogenâ€Doped Porous Carbon Nanosheets as Twoâ€inâ€One Hosts for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, e1706895.	21.0	300
17	A superhydrophilic "nanoglue―for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors. Energy and Environmental Science, 2017, 10, 1958-1965.	30.8	294
18	A hierarchically porous and hydrophilic 3D nickel–iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities. Nano Energy, 2019, 63, 103880.	16.0	275

#	Article	IF	CITATIONS
19	Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: challenges and perspectives. Energy and Environmental Science, 2021, 14, 1176-1193.	30.8	275
20	Enhanced sodium storage capability enabled by super wide-interlayer-spacing MoS2 integrated on carbon fibers. Nano Energy, 2017, 41, 66-74.	16.0	273
21	Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting. Nano Energy, 2017, 34, 472-480.	16.0	258
22	Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design. CheM, 2021, 7, 1708-1754.	11.7	253
23	3D Architecture Materials Made of NiCoAlâ€LDH Nanoplates Coupled with NiCo arbonate Hydroxide Nanowires Grown on Flexible Graphite Paper for Asymmetric Supercapacitors. Advanced Energy Materials, 2014, 4, 1400761.	19.5	251
24	Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nature Communications, 2021, 12, 4182.	12.8	233
25	Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: Challenges and perspectives. Nano Energy, 2019, 57, 459-472.	16.0	232
26	3D Porous Nâ€Doped Graphene Frameworks Made of Interconnected Nanocages for Ultrahighâ€Rate and Longâ€Life Li–O ₂ Batteries. Advanced Functional Materials, 2015, 25, 6913-6920.	14.9	231
27	Ultrafast Selfâ€Assembly of Graphene Oxideâ€Induced Monolithic NiCo–Carbonate Hydroxide Nanowire Architectures with a Superior Volumetric Capacitance for Supercapacitors. Advanced Functional Materials, 2015, 25, 2109-2116.	14.9	230
28	Engineering hollow polyhedrons structured from carbon-coated CoSe ₂ nanospheres bridged by CNTs with boosted sodium storage performance. Journal of Materials Chemistry A, 2017, 5, 13591-13600.	10.3	225
29	Electrocatalytic Oxidation of Glycerol to Formic Acid by CuCo ₂ O ₄ Spinel Oxide Nanostructure Catalysts. ACS Catalysis, 2020, 10, 6741-6752.	11.2	221
30	Ultrasensitive Ironâ€Triggered Nanosized Fe–CoOOH Integrated with Graphene for Highly Efficient Oxygen Evolution. Advanced Energy Materials, 2017, 7, 1602148.	19.5	216
31	Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 15954-15960.	10.3	216
32	Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization. Journal of Materials Chemistry, 2012, 22, 21819.	6.7	215
33	Surfaceâ€Confined Fabrication of Ultrathin Nickel Cobaltâ€Layered Double Hydroxide Nanosheets for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2018, 28, 1803272.	14.9	215
34	ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials. Journal of Power Sources, 2017, 340, 183-191.	7.8	212
35	A Topâ€Down Strategy toward 3D Carbon Nanosheet Frameworks Decorated with Hollow Nanostructures for Superior Lithium Storage. Advanced Functional Materials, 2016, 26, 7590-7598.	14.9	201
36	New Membrane Architecture with High Performance: ZIF-8 Membrane Supported on Vertically Aligned ZnO Nanorods for Gas Permeation and Separation. Chemistry of Materials, 2014, 26, 1975-1981.	6.7	199

#	Article	IF	Citations
37	Highly mesoporous activated carbon electrode for capacitive deionization. Separation and Purification Technology, 2013, 103, 216-221.	7.9	198
38	Engineering Multifunctional Collaborative Catalytic Interface Enabling Efficient Hydrogen Evolution in All pH Range and Seawater. Advanced Energy Materials, 2019, 9, 1901333.	19.5	196
39	Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances. Journal of Materials Chemistry A, 2013, 1, 1963-1968.	10.3	193
40	Highly Stretchable and Ultrasensitive Strain Sensor Based on Reduced Graphene Oxide Microtubes–Elastomer Composite. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27432-27439.	8.0	189
41	Recent advances in innovative strategies for the CO ₂ electroreduction reaction. Energy and Environmental Science, 2021, 14, 765-780.	30.8	188
42	Carbon-supported Ni nanoparticles for efficient CO ₂ electroreduction. Chemical Science, 2018, 9, 8775-8780.	7.4	179
43	Perspectives on solution processing of two-dimensional MXenes. Materials Today, 2021, 48, 214-240.	14.2	178
44	Nanohybrids from NiCoAl-LDH coupled with carbon for pseudocapacitors: understanding the role of nano-structured carbon. Nanoscale, 2014, 6, 3097-3104.	5.6	176
45	NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free high-active electrocatalysts for water oxidation. Carbon, 2016, 110, 1-7.	10.3	175
46	Restructuring of Cu ₂ O to Cu ₂ O@Cu-Metal–Organic Frameworks for Selective Electrochemical Reduction of CO ₂ . ACS Applied Materials & amp; Interfaces, 2019, 11, 9904-9910.	8.0	174
47	Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 19633-19640.	10.3	169
48	Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates. Nature Materials, 2019, 18, 970-976.	27.5	169
49	Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting. Energy and Environmental Science, 2020, 13, 545-553.	30.8	169
50	Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization. Water Research, 2016, 93, 30-37.	11.3	168
51	Toward commercial-level mass-loading electrodes for supercapacitors: opportunities, challenges and perspectives. Energy and Environmental Science, 2021, 14, 576-601.	30.8	166
52	Mass and Charge Transfer Coenhanced Oxygen Evolution Behaviors in CoFe‣ayered Double Hydroxide Assembled on Graphene. Advanced Materials Interfaces, 2016, 3, 1500782.	3.7	165
53	MXene-Based Electrode with Enhanced Pseudocapacitance and Volumetric Capacity for Power-Type and Ultra-Long Life Lithium Storage. ACS Nano, 2018, 12, 3928-3937.	14.6	163
54	Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe2O3 as template and activation agent coupled with KOH activation. Journal of Materials Chemistry A, 2013, 1, 9440.	10.3	162

#	Article	IF	CITATIONS
55	Scrutinizing Defects and Defect Density of Seleniumâ€Doped Graphene for Highâ€Efficiency Triiodide Reduction in Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2018, 57, 4682-4686.	13.8	155
56	Ultrahigh Rate and Longâ€Life Sodiumâ€Ion Batteries Enabled by Engineered Surface and Nearâ€Surface Reactions. Advanced Materials, 2018, 30, 1702486.	21.0	153
57	Freestanding Flexible Li ₂ S Paper Electrode with High Mass and Capacity Loading for Highâ€Energy Li–S Batteries. Advanced Energy Materials, 2017, 7, 1700018.	19.5	152
58	Boric acid-mediated B,N-codoped chitosan-derived porous carbons with a high surface area and greatly improved supercapacitor performance. Nanoscale, 2015, 7, 5120-5125.	5.6	151
59	Multilevel Hollow MXene Tailored Lowâ€Pt Catalyst for Efficient Hydrogen Evolution in Fullâ€pH Range and Seawater. Advanced Functional Materials, 2020, 30, 1910028.	14.9	150
60	Cobalt-embedded nitrogen-doped hollow carbon nanorods for synergistically immobilizing the discharge products in lithium–sulfur battery. Energy Storage Materials, 2016, 5, 223-229.	18.0	149
61	Nitrogenâ€Doped Graphene Nanoribbons with Surface Enriched Active Sites and Enhanced Performance for Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2015, 5, 1500180.	19.5	147
62	Photocatalytic Fixation of Nitrogen to Ammonia by Single Ru Atom Decorated TiO ₂ Nanosheets. ACS Sustainable Chemistry and Engineering, 2019, 7, 6813-6820.	6.7	142
63	A simple and scalable method for preparing low-defect ZIF-8 tubular membranes. Journal of Materials Chemistry A, 2013, 1, 10635.	10.3	139
64	Thinâ€Sheet Carbon Nanomesh with an Excellent Electrocapacitive Performance. Advanced Functional Materials, 2015, 25, 5420-5427.	14.9	139
65	Graphene Sheets from Graphitized Anthracite Coal: Preparation, Decoration, and Application. Energy & Lamp; Fuels, 2012, 26, 5186-5192.	5.1	136
66	Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide. Energy and Environmental Science, 2022, 15, 760-770.	30.8	133
67	Asymmetric capacitive deionization utilizing nitric acid treated activated carbon fiber as the cathode. Electrochimica Acta, 2015, 176, 426-433.	5.2	130
68	N/P-Codoped Thermally Reduced Graphene for High-Performance Supercapacitor Applications. Journal of Physical Chemistry C, 2013, 117, 14912-14919.	3.1	128
69	Carbon-Stabilized Interlayer-Expanded Few-Layer MoSe ₂ Nanosheets for Sodium Ion Batteries with Enhanced Rate Capability and Cycling Performance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32324-32332.	8.0	128
70	Mesoporous microspheres composed of carbon-coated TiO2 nanocrystals with exposed {001} facets for improved visible light photocatalytic activity. Applied Catalysis B: Environmental, 2014, 147, 958-964.	20.2	127
71	Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires. Applied Physics Letters, 2007, 90, 153510.	3.3	126
72	Ni, Co hydroxide triggers electrocatalytic production of high-purity benzoic acid over 400 mA cm ^{â^2} . Energy and Environmental Science, 2020, 13, 4990-4999.	30.8	125

#	Article	IF	Citations
73	Highly Stable Hybrid Capacitive Deionization with a MnO ₂ Anode and a Positively Charged Cathode. Environmental Science and Technology Letters, 2018, 5, 98-102.	8.7	124
74	Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	124
75	Starch Derived Porous Carbon Nanosheets for High-Performance Photovoltaic Capacitive Deionization. Environmental Science & Env	10.0	120
76	Bridging of Ultrathin NiCo ₂ O ₄ Nanosheets and Graphene with Polyaniline: A Theoretical and Experimental Study. Chemistry of Materials, 2016, 28, 5855-5863.	6.7	116
77	A Polymetallic Metalâ€Organic Frameworkâ€Derived Strategy toward Synergistically Multidoped Metal Oxide Electrodes with Ultralong Cycle Life and High Volumetric Capacity. Advanced Functional Materials, 2017, 27, 1605332.	14.9	116
78	GO-guided direct growth of highly oriented metal–organic framework nanosheet membranes for H ₂ /CO ₂ separation. Chemical Science, 2018, 9, 4132-4141.	7.4	116
79	Membrane-Free Hybrid Capacitive Deionization System Based on Redox Reaction for High-Efficiency NaCl Removal. Environmental Science & Environmental Sc	10.0	116
80	Interlayer expanded MoS 2 enabled by edge effect of graphene nanoribbons for high performance lithium and sodium ion batteries. Carbon, 2016, 109, 461-471.	10.3	114
81	Recent research advances of self-discharge in supercapacitors: Mechanisms and suppressing strategies. Journal of Energy Chemistry, 2021, 58, 94-109.	12.9	109
82	Boron-doped graphene as a high-efficiency counter electrode for dye-sensitized solar cells. Chemical Communications, 2014, 50, 3328.	4.1	107
83	Sulfur-infiltrated graphene-backboned mesoporous carbon nanosheets with a conductive polymer coating for long-life lithium–sulfur batteries. Nanoscale, 2015, 7, 7569-7573.	5.6	106
84	Construction of 3D nanostructure hierarchical porous graphitic carbons by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors. Chemical Communications, 2016, 52, 6673-6676.	4.1	106
85	Nitrogen-doped hierarchically porous carbon nanosheets derived from polymer/graphene oxide hydrogels for high-performance supercapacitors. Journal of Colloid and Interface Science, 2020, 560, 69-76.	9.4	106
86	Flexible Paper-like Free-Standing Electrodes by Anchoring Ultrafine SnS ₂ Nanocrystals on Graphene Nanoribbons for High-Performance Sodium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15484-15491.	8.0	102
87	Ultrafast Fabrication of Covalently Crossâ€linked Multifunctional Graphene Oxide Monoliths. Advanced Functional Materials, 2014, 24, 4915-4921.	14.9	101
88	Cellular carbon-wrapped FeSe ₂ nanocavities with ultrathin walls and multiple rooms for ion diffusion-confined ultrafast sodium storage. Journal of Materials Chemistry A, 2019, 7, 4469-4479.	10.3	101
89	Design and Fabrication of Hierarchical NiCoP–MOF Heterostructure with Enhanced Pseudocapacitive Properties. Small, 2021, 17, e2100353.	10.0	101
90	Graphene-mediated highly-dispersed MoS2 nanosheets with enhanced triiodide reduction activity for dye-sensitized solar cells. Carbon, 2016, 100, 474-483.	10.3	100

#	Article	IF	CITATIONS
91	BCN nanosheets templated by g-C ₃ N ₄ for high performance capacitive deionization. Journal of Materials Chemistry A, 2018, 6, 14644-14650.	10.3	99
92	Efficient CO2 electroreduction over pyridinic-N active sites highly exposed on wrinkled porous carbon nanosheets. Chemical Engineering Journal, 2018, 351, 613-621.	12.7	99
93	Porosity-Induced High Selectivity for CO ₂ Electroreduction to CO on Fe-Doped ZIF-Derived Carbon Catalysts. ACS Catalysis, 2019, 9, 11579-11588.	11.2	99
94	Pitch-derived N-doped porous carbon nanosheets with expanded interlayer distance as high-performance sodium-ion battery anodes. Fuel Processing Technology, 2018, 177, 328-335.	7.2	97
95	3D nickel-cobalt phosphide heterostructure for high-performance solid-state hybrid supercapacitors. Journal of Power Sources, 2020, 467, 228324.	7.8	97
96	Energyâ€Saving Hydrogen Production by Seawater Electrolysis Coupling Sulfion Degradation. Advanced Materials, 2022, 34, e2109321.	21.0	95
97	Perovskite Oxide Catalysts for Advanced Oxidation Reactions. Advanced Functional Materials, 2021, 31, 2102089.	14.9	93
98	Aerobic oxidation of alcohols over Au/TiO2: An insight on the promotion effect of water on the catalytic activity of Au/TiO2. Catalysis Communications, 2008, 9, 2278-2281.	3.3	92
99	High-energy quasi-solid-state supercapacitors enabled by carbon nanofoam from biowaste and high-voltage inorganic gel electrolyte. Carbon, 2019, 149, 273-280.	10.3	91
100	N, P co-doped hierarchical porous carbon from rapeseed cake with enhanced supercapacitance. Renewable Energy, 2021, 170, 188-196.	8.9	91
101	Decoupling and correlating the ion transport by engineering 2D carbon nanosheets for enhanced charge storage. Nano Energy, 2019, 64, 103921.	16.0	90
102	Operando Revealing Dynamic Reconstruction of NiCo Carbonate Hydroxide for High-Rate Energy Storage. Joule, 2020, 4, 673-687.	24.0	88
103	Understanding of Sodium Storage Mechanism in Hard Carbons: Ongoing Development under Debate. Advanced Energy Materials, 2022, 12, .	19.5	88
104	Chemically grafting graphene oxide to B,N co-doped graphene via ionic liquid and their superior performance for triiodide reduction. Nano Energy, 2016, 25, 184-192.	16.0	87
105	Rational design of high-performance sodium-ion battery anode by molecular engineering of coal tar pitch. Chemical Engineering Journal, 2018, 342, 52-60.	12.7	87
106	Nitrogen-doped porous carbon from coal for high efficiency CO2 electrocatalytic reduction. Carbon, 2019, 151, 46-52.	10.3	87
107	Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li-S batteries. Energy Storage Materials, 2019, 20, 98-107.	18.0	87
108	Highâ€Stackingâ€Density, Superiorâ€Roughness LDH Bridged with Vertically Aligned Graphene for Highâ€Performance Asymmetric Supercapacitors. Small, 2017, 13, 1701288.	10.0	83

#	Article	IF	Citations
109	Strongly Coupled Architectures of Cobalt Phosphide Nanoparticles Assembled on Graphene as Bifunctional Electrocatalysts for Water Splitting. ChemElectroChem, 2016, 3, 719-725.	3.4	82
110	Activation of transition metal oxides by in-situ electro-regulated structure-reconstruction for ultra-efficient oxygen evolution. Nano Energy, 2019, 58, 778-785.	16.0	81
111	A Universal Converse Voltage Process for Triggering Transition Metal Hybrids In Situ Phase Restruction toward Ultrahighâ€Rate Supercapacitors. Advanced Materials, 2019, 31, e1901241.	21.0	81
112	Ultrastable and high-capacity carbon nanofiber anodes derived from pitch/polyacrylonitrile for flexible sodium-ion batteries. Carbon, 2018, 135, 187-194.	10.3	80
113	Nanopore-confined g-C ₃ N ₄ nanodots inÂN, S co-doped hollow porous carbon with boosted capacity for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 7133-7141.	10.3	80
114	A closed-loop and scalable process for the production of biomass-derived superhydrophilic carbon for supercapacitors. Green Chemistry, 2021, 23, 3400-3409.	9.0	80
115	Highly stable lithium–sulfur batteries based on p–n heterojunctions embedded on hollow sheath carbon propelling polysulfides conversion. Journal of Materials Chemistry A, 2019, 7, 9230-9240.	10.3	79
116	Cobalt nitride nanoparticles embedded in porous carbon nanosheet arrays propelling polysulfides conversion for highly stable lithium–sulfur batteries. Energy Storage Materials, 2019, 21, 210-218.	18.0	79
117	Nitrogen and phosphorus dual-doped porous carbons for high-rate potassium ion batteries. Carbon, 2021, 179, 33-41.	10.3	79
118	The Mechanism of Piezocatalysis: Energy Band Theory or Screening Charge Effect?. Angewandte Chemie - International Edition, 2022, 61, e202110429.	13.8	79
119	Free-standing, hierarchically porous carbon nanotube film as a binder-free electrode for high-energy Li–O2 batteries. Journal of Materials Chemistry A, 2013, 1, 12033.	10.3	78
120	CoMn Layered Double Hydroxides/Carbon Nanotubes Architectures as Highâ€Performance Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem, 2016, 3, 906-912.	3.4	78
121	Tuned Fabrication of the Aligned and Opened CNT Membrane with Exceptionally High Permeability and Selectivity for Bioalcohol Recovery. Nano Letters, 2018, 18, 6150-6156.	9.1	78
122	Enhancing the capacitive deionization performance of NaMnO ₂ by interface engineering and redox-reaction. Environmental Science: Nano, 2019, 6, 2379-2388.	4.3	78
123	Mutual modulation between surface chemistry and bulk microstructure within secondary particles of nickel-rich layered oxides. Nature Communications, 2020, 11 , 4433.	12.8	78
124	3D N,O-Codoped Egg-Box-Like Carbons with Tuned Channels for High Areal Capacitance Supercapacitors. Nano-Micro Letters, 2020, 12, 82.	27.0	78
125	Boosting the Electrocatalysis of MXenes by Plasmonâ€Induced Thermalization and Hotâ€Electron Injection. Angewandte Chemie - International Edition, 2021, 60, 9416-9420.	13.8	78
126	Nitrogen-doped graphene nanoribbons for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 16832-16835.	10.3	75

#	Article	IF	Citations
127	Sulfonated Graphene as Cationâ€Selective Coating: A New Strategy for Highâ€Performance Membrane Capacitive Deionization. Advanced Materials Interfaces, 2015, 2, 1500372.	3.7	7 5
128	Template preparation of nanoscale CexFe1â^'xO2 solid solutions and their catalytic properties for ethanol steam reforming. Journal of Materials Chemistry, 2009, 19, 1417.	6.7	74
129	Nano-sized ZIF-8 anchored polyelectrolyte-decorated silica for Nitrogen-Rich Hollow Carbon Shell Frameworks toward alkaline and neutral supercapacitors. Carbon, 2018, 136, 176-186.	10.3	74
130	A Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Energy-Harvesting Soft Actuator with Self-Powered Humidity Sensing and Real-Time Motion Tracking Capability. ACS Nano, 2021, 15, 16811-16818.	14.6	74
131	Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth. Journal of Membrane Science, 2017, 544, 342-350.	8.2	73
132	Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes. Journal of Colloid and Interface Science, 2015, 446, 373-378.	9.4	72
133	Rational design and fabrication of sulfur-doped porous graphene with enhanced performance as a counter electrode in dye-sensitized solar cells. Journal of Materials Chemistry A, 2017, 5, 2280-2287.	10.3	72
134	Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. Nano Research, 2018, 11, 1850-1860.	10.4	72
135	Ureaâ€Mediated Monoliths Made of Nitrogenâ€Enriched Mesoporous Carbon Nanosheets for Highâ€Performance Aqueous Zinc Ion Hybrid Capacitors. Small, 2022, 18, e2108057.	10.0	69
136	Template Preparation of Highly Active and Selective Cu–Cr Catalysts with High Surface Area for Glycerol Hydrogenolysis. Catalysis Letters, 2009, 130, 169-176.	2.6	68
137	Selfâ€Templating Synthesis of 3D Hollow Tubular Porous Carbon Derived from Straw Cellulose Waste with Excellent Performance for Supercapacitors. ChemSusChem, 2019, 12, 1390-1400.	6.8	68
138	Adsorptive Removal of Thiophenic Compounds from Oils by Activated Carbon Modified with Concentrated Nitric Acid. Energy & Samp; Fuels, 2013, 27, 1499-1505.	5.1	67
139	Nanogeosciences: Research History, Current Status, and Development Trends. Journal of Nanoscience and Nanotechnology, 2017, 17, 5930-5965.	0.9	67
140	ZIF-67-Derived Cobalt/Nitrogen-Doped Carbon Composites for Efficient Electrocatalytic N ₂ Reduction. ACS Applied Energy Materials, 2019, 2, 6071-6077.	5.1	67
141	Freezeâ€Tolerant Hydrogel Electrolyte with High Strength for Stable Operation of Flexible Zincâ€lon Hybrid Supercapacitors. Small, 2022, 18, e2200055.	10.0	67
142	Phase controllable synthesis of Ni2+ post-modified CoP nanowire for enhanced oxygen evolution. Nano Energy, 2019, 62, 136-143.	16.0	66
143	Dual integration system endowing two-dimensional titanium disulfide with enhanced triiodide reduction performance in dye-sensitized solar cells. Nano Energy, 2016, 22, 59-69.	16.0	65
144	Low temperature plasma-mediated synthesis of graphene nanosheets for supercapacitor electrodes. Journal of Materials Chemistry, 2012, 22, 6061.	6.7	64

#	Article	IF	CITATIONS
145	3D Carbon Frameworks for Ultrafast Charge/Discharge Rate Supercapacitors with High Energy-Power Density. Nano-Micro Letters, 2021, 13, 8.	27.0	64
146	Microscopic-Level Insights into the Mechanism of Enhanced NH⟨sub⟩3⟨ sub⟩ Synthesis in Plasma-Enabled Cascade N⟨sub⟩2⟨ sub⟩ Oxidationâ€"Electroreduction System. Journal of the American Chemical Society, 2022, 144, 10193-10200.	13.7	64
147	Low-temperature plasma-assisted preparation of graphene supported palladium nanoparticles with high hydrodesulfurization activity. Journal of Materials Chemistry, 2012, 22, 14363.	6.7	61
148	Stabilizing MXene by Hydration Chemistry in Aqueous Solution. Angewandte Chemie - International Edition, 2021, 60, 26587-26591.	13.8	61
149	Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angewandte Chemie - International Edition, 2022, 61, .	13.8	60
150	Calcined MgAl-Layered Double Hydroxide/Graphene Hybrids for Capacitive Deionization. Industrial & Engineering Chemistry Research, 2018, 57, 6417-6425.	3.7	59
151	Ultrafast construction of interfacial sites by wet chemical etching to enhance electrocatalytic oxygen evolution. Nano Energy, 2020, 69, 104367.	16.0	58
152	Facile Fabrication of NiCoAl-Layered Metal Oxide/Graphene Nanosheets for Efficient Capacitive Deionization Defluorination. ACS Applied Materials & Eamp; Interfaces, 2019, 11, 31200-31209.	8.0	57
153	Biomassâ€based Hierarchical Porous Carbon for Supercapacitors: Effect of Aqueous and Organic Electrolytes on the Electrochemical Performance. ChemSusChem, 2019, 12, 5099-5110.	6.8	57
154	Is It Appropriate to Use the Nafion Membrane in Electrocatalytic N ₂ Reduction?. Small Methods, 2019, 3, 1900474.	8.6	56
155	Promoting the electroreduction of CO ₂ with oxygen vacancies on a plasma-activated SnO _x /carbon foam monolithic electrode. Journal of Materials Chemistry A, 2020, 8, 1779-1786.	10.3	56
156	New Pd/SiO ₂ @ZIF-8 Core–Shell Catalyst with Selective, Antipoisoning, and Antileaching Properties for the Hydrogenation of Alkenes. Industrial & Engineering Chemistry Research, 2014, 53, 10906-10913.	3.7	55
157	Electrochemical and Capacitive Properties of Carbon Dots/Reduced Graphene Oxide Supercapacitors. Nanomaterials, 2016, 6, 212.	4.1	55
158	Nitrogen and phosphorus dual-doped graphene as a metal-free high-efficiency electrocatalyst for triiodide reduction. Nanoscale, 2016, 8, 17458-17464.	5.6	55
159	Recognition of Water-Induced Effects toward Enhanced Interaction between Catalyst and Reactant in Alcohol Oxidation. Journal of the American Chemical Society, 2021, 143, 6071-6078.	13.7	55
160	Supramolecular polymerization-assisted synthesis of nitrogen and sulfur dual-doped porous graphene networks from petroleum coke as efficient metal-free electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 11331-11339.	10.3	54
161	Fabrication of oriented metal-organic framework nanosheet membrane coated stainless steel meshes for highly efficient oil/water separation. Separation and Purification Technology, 2019, 229, 115835.	7.9	54
162	Sustainable biowaste strategy to fabricate dual-doped carbon frameworks with remarkable performance for flexible solid-state supercapacitors. Journal of Power Sources, 2019, 418, 112-121.	7.8	54

#	Article	IF	Citations
163	A Li ₂ S-based all-solid-state battery with high energy and superior safety. Science Advances, 2022, 8, eabl8390.	10.3	54
164	Shape-Control and Characterization of Magnetite Prepared via a One-Step Solvothermal Route. Crystal Growth and Design, 2010, 10, 2863-2869.	3.0	53
165	Thermodynamically Stable Pickering Emulsion Configured with Carbon-Nanotube-Bridged Nanosheet-Shaped Layered Double Hydroxide for Selective Oxidation of Benzyl Alcohol. ACS Applied Materials & Interfaces, 2015, 7, 12203-12209.	8.0	53
166	Synergies between Unsaturated Zn/Cu Doping Sites in Carbon Dots Provide New Pathways for Photocatalytic Oxidation. ACS Catalysis, 2018, 8, 747-753.	11.2	53
167	Boosting zinc-ion storage capability by engineering hierarchically porous nitrogen-doped carbon nanocage framework. Journal of Power Sources, 2021, 506, 230224.	7.8	53
168	General synthesis of MXene by green etching chemistry of fluoride-free Lewis acidic melts. Rare Metals, 2020, 39, 1237-1238.	7.1	52
169	Electrospun porous hierarchical carbon nanofibers with tailored structures for supercapacitors and capacitive deionization. New Journal of Chemistry, 2016, 40, 3786-3792.	2.8	51
170	A Molecularâ€Cage Strategy Enabling Efficient Chemisorption–Electrocatalytic Interface in Nanostructured Li ₂ S Cathode for Li Metalâ€Free Rechargeable Cells with High Energy. Advanced Functional Materials, 2019, 29, 1905986.	14.9	51
171	An acid-free medium growth of rutile TiO ₂ nanorods arrays and their application in perovskite solar cells. Journal of Materials Chemistry C, 2015, 3, 729-733.	5.5	50
172	Green fabrication of magnetic recoverable graphene/MnFe ₂ O ₄ hybrids for efficient decomposition of methylene blue and the Mn/FeÂredox synergetic mechanism. RSC Advances, 2016, 6, 104549-104555.	3.6	50
173	Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture. Nanoscale, 2016, 8, 2159-2167.	5.6	50
174	Graphene Oxide-Tuned MoS ₂ with an Expanded Interlayer for Efficient Hybrid Capacitive Deionization. ACS Sustainable Chemistry and Engineering, 2020, 8, 9690-9697.	6.7	50
175	Carbon-enabled microwave chemistry: From interaction mechanisms to nanomaterial manufacturing. Nano Energy, 2021, 85, 106027.	16.0	50
176	Methanol-Mediated Electrosynthesis of Ammonia. ACS Energy Letters, 2021, 6, 3844-3850.	17.4	50
177	Phaseâ€Reversal Emulsion Catalysis with CNT–TiO ₂ Nanohybrids for the Selective Oxidation of Benzyl Alcohol. Chemistry - A European Journal, 2013, 19, 16192-16195.	3.3	49
178	Preparation and gas separation performance of supported carbon membranes with ordered mesoporous carbon interlayer. Journal of Membrane Science, 2014, 450, 469-477.	8.2	49
179	Inherent N,O-containing carbon frameworks as electrode materials for high-performance supercapacitors. Nanoscale, 2016, 8, 16323-16331.	5.6	49
180	Ultrasound-Assisted Nitrogen and Boron Codoping of Graphene Oxide for Efficient Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 3434-3442.	6.7	49

#	Article	IF	CITATIONS
181	A durable MXene-based zinc ion hybrid supercapacitor with sulfated polysaccharide reinforced hydrogel/electrolyte. Journal of Materials Chemistry A, 2021, 9, 23941-23954.	10.3	49
182	Ultrahighâ€Capacity and Longâ€Life Lithiumâ€"Metal Batteries Enabled by Engineering Carbon Nanofiberâ€"Stabilized Graphene Aerogel Film Host. Small, 2018, 14, e1803310.	10.0	48
183	Strategies to activate inert nitrogen molecules for efficient ammonia electrosynthesis: current status, challenges, and perspectives. Energy and Environmental Science, 2022, 15, 2776-2805.	30.8	48
184	Towards efficient electrocatalysts for oxygen reduction by doping cobalt into graphene-supported graphitic carbon nitride. Journal of Materials Chemistry A, 2015, 3, 19657-19661.	10.3	47
185	Surface-to-Bulk Redox Coupling through Thermally Driven Li Redistribution in Li- and Mn-Rich Layered Cathode Materials. Journal of the American Chemical Society, 2019, 141, 12079-12086.	13.7	47
186	Polymer casting of ultralight graphene aerogels for the production of conductive nanocomposites with low filling content. Journal of Materials Chemistry A, 2014, 2, 3756-3760.	10.3	46
187	Microwaveâ€Assisted Ultrafast Synthesis of Molybdenum Carbide Nanoparticles Grown on Carbon Matrix for Efficient Hydrogen Evolution Reaction. Small Methods, 2019, 3, 1900259.	8.6	46
188	Electrochemically Driven Coordination Tuning of FeOOH Integrated on Carbon Fiber Paper for Enhanced Oxygen Evolution. Small, 2019, 15, e1901015.	10.0	46
189	Achieving ultralong life sodium storage in amorphous cobalt–tin binary sulfide nanoboxes sheathed in N-doped carbon. Journal of Materials Chemistry A, 2017, 5, 10398-10405.	10.3	45
190	Ultrasmall diiron phosphide nanodots anchored on graphene sheets with enhanced electrocatalytic activity for hydrogen production via high-efficiency water splitting. Journal of Materials Chemistry A, 2016, 4, 16028-16035.	10.3	44
191	In situ synthesis of cotton-derived Ni/C catalysts with controllable structures and enhanced catalytic performance. Green Chemistry, 2016, 18, 3594-3599.	9.0	44
192	Moss-Covered Rock-like Hybrid Porous Carbons with Enhanced Electrochemical Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 3065-3071.	6.7	44
193	Operando Tailoring of Defects and Strains in Corrugated βâ€Ni(OH) ₂ Nanosheets for Stable and Highâ€Rate Energy Storage. Advanced Materials, 2021, 33, e2006147.	21.0	44
194	Facile synthesis of highly graphitized porous carbon monoliths with a balance on crystallization and pore-structure. Journal of Materials Chemistry A, 2014, 2, 12785-12791.	10.3	43
195	Interconnected N/P co-doped carbon nanocage as high capacitance electrode material for energy storage devices. Nano Research, 2022, 15, 4068-4075.	10.4	43
196	Effect of carbonization atmosphere on the structure changes of PAN carbon membranes. Journal of Porous Materials, 2009, 16, 197-203.	2.6	42
197	Capping nanoparticles with graphene quantum dots for enhanced thermoelectric performance. Chemical Science, 2015, 6, 4103-4108.	7.4	42
198	SnF ₂ â€Catalyzed Formation of Polymerized Dioxolane as Solid Electrolyte and its Thermal Decomposition Behavior. Angewandte Chemie - International Edition, 2022, 61, .	13.8	42

#	Article	IF	Citations
199	Mismatching integration-enabled strains and defects engineering in LDH microstructure for high-rate and long-life charge storage. Nature Communications, 2022, 13, 1409.	12.8	42
200	Nitrogen-doped tubular carbon foam electrodes for efficient electroreduction of CO ₂ to syngas with potential-independent CO/H ₂ ratios. Journal of Materials Chemistry A, 2019, 7, 18852-18860.	10.3	41
201	A Câ€S Linkageâ€Triggered Ultrahigh Nitrogenâ€Doped Carbon and the Identification of Active Site in Triiodide Reduction. Angewandte Chemie - International Edition, 2021, 60, 3587-3595.	13.8	41
202	Hydrogenâ€Bonding Crosslinking MXene to Highly Robust and Ultralight Aerogels for Strengthening Lithium Metal Anode. Small Science, 2021, 1, 2100021.	9.9	41
203	Three-dimensional hierarchical Na3Fe2(PO4)3/C with superior and fast sodium uptake for efficient hybrid capacitive deionization. Desalination, 2021, 520, 115341.	8.2	41
204	Synthesis and structure regulation of armor-wearing biomass-based porous carbon: Suppression the leakage current and self-discharge of supercapacitors. Carbon, 2022, 196, 136-145.	10.3	41
205	Selective hydrogenation of cinnamaldehyde over carbon nanotube supported pd-ru catalyst. Reaction Kinetics and Catalysis Letters, 2006, 88, 269-276.	0.6	40
206	Electrospun nitrogen-doped carbon nanofibers with tuned microstructure and enhanced lithium storage properties. Carbon, 2018, 139, 716-724.	10.3	40
207	Efficient Electrochemical Reduction of CO ₂ by Ni–N Catalysts with Tunable Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 15030-15035.	6.7	40
208	A quasi-solid-state rechargeable cell with high energy and superior safety enabled by stable redox chemistry of Li ₂ S in gel electrolyte. Energy and Environmental Science, 2021, 14, 2278-2290.	30.8	40
209	A quinoline-functionalized amphiphilic fluorogenic probe for specific detection of trivalent cations. RSC Advances, 2014, 4, 46955-46961.	3.6	39
210	Hybrid pseudocapacitor materials from polyaniline@multi-walled carbon nanotube with ultrafine nanofiber-assembled network shell. Carbon, 2015, 95, 323-329.	10.3	39
211	Self-assembled sulfur/reduced graphene oxide nanoribbon paper as a free-standing electrode for high performance lithium–sulfur batteries. Chemical Communications, 2016, 52, 12825-12828.	4.1	39
212	Metal-Tuned W ₁₈ O ₄₉ for Efficient Electrocatalytic N ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 2957-2963.	6.7	39
213	A multi-interface CoNi-SP/C heterostructure for quasi-solid-state hybrid supercapacitors with a graphene oxide-containing hydrogel electrolyte. Journal of Materials Chemistry A, 2022, 10, 4671-4682.	10.3	39
214	Preparation of core (Ni base)–shell (Silicalite-1) catalysts and their application for alkali resistance in direct internal reforming molten carbonate fuel cell. Journal of Power Sources, 2012, 198, 14-22.	7.8	38
215	Biomass-Derived Carbon Nanospheres with Turbostratic Structure as Metal-Free Catalysts for Selective Hydrogenation of <i>o</i> -Chloronitrobenzene. ACS Sustainable Chemistry and Engineering, 2017, 5, 7481-7485.	6.7	38
216	High performance concentration capacitors with graphene hydrogel electrodes for harvesting salinity gradient energy. Journal of Materials Chemistry A, 2018, 6, 4981-4987.	10.3	38

#	Article	IF	Citations
217	Full Bulkâ€Structure Reconstruction into Amorphorized Cobaltâ€"Iron Oxyhydroxide Nanosheet Electrocatalysts for Greatly Improved Electrocatalytic Activity. Small Methods, 2020, 4, 2000546.	8.6	38
218	Effective thermodynamic alteration to Mg(NH $<$ sub $>2sub>0<1sub>2sub>26"LiH system: achieving near ambient-temperature hydrogen storage. Journal of Materials Chemistry A, 2014, 2, 15816-15822.$	10.3	37
219	Insights into the Anchoring of Polysulfides and Catalytic Performance by Metal Phthalocyanine Covalent Organic Frameworks as the Cathode in Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 10185-10192.	6.7	37
220	Toward an Understanding of the Enhanced CO ₂ Electroreduction in NaCl Electrolyte over CoPc Moleculeâ€Implanted Graphitic Carbon Nitride Catalyst. Advanced Energy Materials, 2021, 11, 2100075.	19.5	36
221	Targeted Fe-filled carbon nanotube as a multifunctional contrast agent for thermoacoustic and magnetic resonance imaging of tumor in living mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 235-244.	3.3	35
222	Pt/ZnO@C Nanocable with Dual-Enhanced Photocatalytic Performance and Superior Photostability. Langmuir, 2017, 33, 4452-4460.	3.5	35
223	Interface Engineering of Ni ₃ N@Fe ₃ N Heterostructure Supported on Carbon Fiber for Enhanced Water Oxidation. Industrial & Engineering Chemistry Research, 2017, 56, 14245-14251.	3.7	35
224	Wrinkled porous carbon nanosheets from methylnaphthalene oil for high-performance supercapacitors. Fuel Processing Technology, 2018, 175, 10-16.	7.2	35
225	New Insights into the Anchoring Mechanism of Polysulfides inside Nanoporous Covalent Organic Frameworks for Lithium–Sulfur Batteries. ACS Applied Materials & 1, 10, 43896-43903.	8.0	35
226	Polyethyleneimine-Mediated Fabrication of Two-Dimensional Cobalt Sulfide/Graphene Hybrid Nanosheets for High-Performance Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 26235-26242.	8.0	35
227	Synthesis, modification strategies and applications of coal-based carbon materials. Fuel Processing Technology, 2022, 230, 107203.	7.2	35
228	Effects of carbonization conditions on the properties of coal-based microfiltration carbon membranes. Journal of Porous Materials, 2008, 15, 1-6.	2.6	34
229	Implanting CNT Forest onto Carbon Nanosheets as Multifunctional Hosts for Highâ€Performance Lithium Metal Batteries. Small Methods, 2019, 3, 1800546.	8.6	34
230	The Mechanism of Piezocatalysis: Energy Band Theory or Screening Charge Effect?. Angewandte Chemie, 2022, 134, .	2.0	34
231	$H \cdot sub \cdot x \cdot sub \cdot MoO \cdot sub \cdot 3a^* y \cdot sub \cdot nanobelts$ with sea water as electrolyte for high-performance pseudocapacitors and desalination devices. Journal of Materials Chemistry A, 2015, 3, 17217-17223.	10.3	33
232	Tailor-made graphene aerogels with inbuilt baffle plates by charge-induced template-directed assembly for high-performance Li–S batteries. Journal of Materials Chemistry A, 2015, 3, 21842-21848.	10.3	33
233	Thermal-healing of lattice defects for high-energy single-crystalline battery cathodes. Nature Communications, 2022, 13, 704.	12.8	33
234	Compressible graphene aerogel supported CoO nanostructures as a binder-free electrode for high-performance lithium-ion batteries. RSC Advances, 2015, 5, 8929-8932.	3.6	32

#	Article	IF	CITATIONS
235	Ultrafine Fe ₃ O ₄ Quantum Dots on Hybrid Carbon Nanosheets for Longâ€Life, Highâ€Rate Alkaliâ€Metal Storage. ChemElectroChem, 2016, 3, 38-44.	3.4	32
236	CoS nanosheets-coupled graphene quantum dots architectures as a binder-free counter electrode for high-performance DSSCs. Science China Materials, 2016, 59, 104-111.	6.3	32
237	Nitrogen-doped tubular/porous carbon channels implanted on graphene frameworks for multiple confinement of sulfur and polysulfides. Journal of Materials Chemistry A, 2017, 5, 10380-10386.	10.3	32
238	Ultrathin Nitrogenâ€Enriched Hybrid Carbon Nanosheets for Supercapacitors with Ultrahigh Rate Performance and High Energy Density. ChemElectroChem, 2017, 4, 369-375.	3.4	32
239	Oriented Nanosheet-Assembled CoNi-LDH Cages with Efficient Ion Diffusion for Quasi-Solid-State Hybrid Supercapacitors. Inorganic Chemistry, 2021, 60, 12197-12205.	4.0	32
240	An ionic liquid template approach to graphene–carbon xerogel composites for supercapacitors with enhanced performance. Journal of Materials Chemistry A, 2014, 2, 14329.	10.3	31
241	High performance asymmetric capacitive mixing with oppositely charged carbon electrodes for energy production from salinity differences. Journal of Materials Chemistry A, 2017, 5, 20374-20380.	10.3	31
242	Inverted Capacitive Deionization with Highly Enhanced Stability Performance Utilizing Ionic Liquid-Functionalized Carbon Electrodes. ACS Sustainable Chemistry and Engineering, 2019, 7, 15715-15722.	6.7	31
243	Boron-nitride-carbon nanosheets with different pore structure and surface properties for capacitive deionization. Journal of Colloid and Interface Science, 2019, 552, 604-612.	9.4	31
244	Designed synthesis of cobalt nanoparticles embedded carbon nanocages as bifunctional electrocatalysts for oxygen evolution and reduction. Carbon, 2019, 144, 492-499.	10.3	31
245	Rechargeable Aqueous Mnâ€Metal Battery Enabled by Inorganic–Organic Interfaces. Angewandte Chemie - International Edition, 2022, 61, .	13.8	31
246	Rational design of metal oxide hollow nanostructures decorated carbon nanosheets for superior lithium storage. Journal of Materials Chemistry A, 2016, 4, 17718-17725.	10.3	30
247	Boosting charge storage in 1D manganese oxide-carbon composite by phosphorus-assisted structural modification for supercapacitor applications. Energy Storage Materials, 2020, 31, 172-180.	18.0	30
248	Carbon Nanotube Templated Synthesis of CeF3 Nanowires. Chemistry of Materials, 2007, 19, 3364-3366.	6.7	29
249	Microwave-Assisted Preparation and Hydrazine Decomposition Properties of Nanostructured Tungsten Carbides on Carbon Nanotubes. Industrial & Engineering Chemistry Research, 2009, 48, 3244-3248.	3.7	29
250	Phosphate Species up to 70% Mass Ratio for Enhanced Pseudocapacitive Properties. Small, 2018, 14, e1803811.	10.0	29
251	A novel approach to Co/CNTs catalyst via chemical vapor deposition of organometallic compounds. Catalysis Letters, 2005, 101, 211-214.	2.6	28
252	Co/CNF Catalysts Tailored by Controlling the Deposition of Metal Colloids onto CNFs: Preparation and Catalytic Properties. Chemistry - A European Journal, 2006, 12, 2147-2151.	3.3	28

#	Article	IF	CITATIONS
253	Scrutinizing Defects and Defect Density of Seleniumâ€Doped Graphene for Highâ€Efficiency Triiodide Reduction in Dyeâ€Sensitized Solar Cells. Angewandte Chemie, 2018, 130, 4772-4776.	2.0	28
254	Liquid Exfoliation of Two-Dimensional Pbl ₂ Nanosheets for Ultrafast Photonics. ACS Photonics, 2019, 6, 1051-1057.	6.6	28
255	A long/short-range interconnected carbon with well-defined mesopore for high-energy-density supercapacitors. Nano Research, 2022, 15, 1399-1408.	10.4	28
256	Porous polyaniline arrays oriented on functionalized carbon cloth as binder-free electrode for flexible supercapacitors. Journal of Electroanalytical Chemistry, 2019, 848, 113348.	3.8	27
257	Multiphase, Multiscale Chemomechanics at Extreme Low Temperatures: Battery Electrodes for Operation in a Wide Temperature Range. Advanced Energy Materials, 2021, 11, 2102122.	19.5	27
258	A Highâ€Energy and Safe Lithium Battery Enabled by Solidâ€State Redox Chemistry in a Fireproof Gel Electrolyte. Advanced Materials, 2022, 34, e2201981.	21.0	27
259	Long life rechargeable Li-O2 batteries enabled by enhanced charge transfer in nanocable-like Fe@N-doped carbon nanotube catalyst. Science China Materials, 2017, 60, 415-426.	6.3	26
260	High-Performance Co-Based ZIF-67 Tubular Membrane Achieved by ZnO-Induced Synthesis for Highly Efficient Pervaporation Separation of Methanol/Methyl <i>tert</i> -Butyl Ether Mixture. Industrial & Amp; Engineering Chemistry Research, 2019, 58, 15297-15306.	3.7	26
261	Boosting Supercapacitor Performance of Graphene by Coupling with Nitrogenâ€Doped Hollow Carbon Frameworks. Chemistry - A European Journal, 2020, 26, 2897-2903.	3.3	26
262	Facile hydrothermal synthesis of SnO2/C microspheres and double layered core–shell SnO2 microspheres as anode materials for Li-ion secondary batteries. RSC Advances, 2014, 4, 25189-25194.	3.6	25
263	Improved kinetics of the Mg(NH ₂) ₂ –2LiH system by addition of lithium halides. RSC Advances, 2014, 4, 32555.	3.6	25
264	Facile Fabrication of Bicomponent CoO/CoFe ₂ O ₄ â€Nâ€Doped Graphene Hybrids with Ultrahigh Lithium Storage Capacity. Particle and Particle Systems Characterization, 2015, 32, 91-97.	2.3	25
265	The Electrolysis of Antiâ€Perovskite Li ₂ OHCl for Prelithiation of Highâ€Energyâ€Density Batteries. Angewandte Chemie - International Edition, 2021, 60, 13013-13020.	13.8	25
266	Facile synthesis of low-cost MnPO4 with hollow grape-like clusters for rapid removal uranium from wastewater. Journal of Hazardous Materials, 2022, 434, 128894.	12.4	25
267	A General Surface Swellingâ€Induced Electroless Deposition Strategy for Fast Fabrication of Copper Circuits on Various Polymer Substrates. Advanced Materials Interfaces, 2017, 4, 1700052.	3.7	24
268	Effective Fixation of Carbon in g ₃ N ₄ Enabled by Mgâ€Induced Selective Reconstruction. Small, 2020, 16, e1907164.	10.0	24
269	Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€Ion Batteries. Angewandte Chemie, 2022, 134, .	2.0	24
270	Microstructure regulation of pitch-based soft carbon anodes by iodine treatment towards high-performance potassium-ion batteries. Journal of Colloid and Interface Science, 2022, 615, 485-493.	9.4	24

#	Article	IF	Citations
271	Sodium Metal Anodes with Selfâ€Correction Function Based on Fluorineâ€Superdoped CNTs/Cellulose Nanofibrils Composite Paper. Advanced Functional Materials, 2022, 32, .	14.9	24
272	Heterogeneous Ligand-Free Rhodium Oxide Catalyst Embedded within Zeolitic Microchannel to Enhance Regioselectivity in Hydroformylation. Industrial & Engineering Chemistry Research, 2019, 58, 21285-21295.	3.7	23
273	A recyclable route to produce biochar with a tailored structure and surface chemistry for enhanced charge storage. Green Chemistry, 2019, 21, 2095-2103.	9.0	23
274	Engineering Kinetics-Favorable Carbon Sheets with an Intrinsic Network for a Superior Supercapacitor Containing a Dual Cross-linked Hydrogel Electrolyte. ACS Applied Materials & Samp; Interfaces, 2020, 12, 53164-53173.	8.0	23
275	Bimetallic Zn/Co-ZIF tubular membrane for highly efficient pervaporation separation of Methanol/MTBE mixture. Journal of Membrane Science, 2021, 638, 119676.	8.2	23
276	Ni@Ni ₃ N Embedded on Three-Dimensional Carbon Nanosheets for High-Performance Lithium/Sodium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 48536-48545.	8.0	23
277	Hydrogen Production and Water Desalination with Onâ€demand Electricity Output Enabled by Electrochemical Neutralization Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	13.8	23
278	Phosphorus Removal from Silicon by Vacuum Refining and Directional Solidification. Journal of Electronic Materials, 2014, 43, 314-319.	2.2	22
279	Hierarchically porous carbon architectures embedded with hollow nanocapsules for high-performance lithium storage. Journal of Materials Chemistry A, 2015, 3, 5054-5059.	10.3	22
280	A hydrogel-mediated scalable strategy toward core-shell polyaniline/poly(acrylic acid)-modified carbon nanotube hybrids as efficient electrodes for supercapacitor applications. Applied Surface Science, 2018, 436, 189-197.	6.1	22
281	Operando leaching of pre-incorporated Al and mechanism in transition-metal hybrids on carbon substrates for enhanced charge storage. Matter, 2021, 4, 2902-2918.	10.0	22
282	NiCo (oxy)selenide electrocatalysts <i>via</i> anionic regulation for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2022, 10, 5410-5419.	10.3	22
283	Ultraâ€High Fluorine Enhanced Homogeneous Nucleation of Lithium Metal on Stepped Carbon Nanosheets with Abundant Edge Sites. Advanced Energy Materials, 2022, 12, .	19.5	22
284	KOH-activated depleted fullerene soot for electrochemical double-layer capacitors. Journal of Applied Electrochemistry, 2014, 44, 309-316.	2.9	21
285	Towards the Preparation of Ordered Mesoporous Carbon/Carbon Composite Membranes for Gas Separation. Separation Science and Technology, 2014, 49, 171-178.	2.5	21
286	Block copolymer-guided fabrication of shuttle-like polyaniline nanoflowers with radiating whiskers for application in supercapacitors. RSC Advances, 2015, 5, 1016-1023.	3.6	21
287	Microporous MOFs Engaged in the Formation of Nitrogenâ€Doped Mesoporous Carbon Nanosheets for Highâ€Rate Supercapacitors. Chemistry - A European Journal, 2018, 24, 2681-2686.	3.3	21
288	In Situ Growing Chromium Oxynitride Nanoparticles on Carbon Nanofibers to Stabilize Lithium Deposition for Lithium Metal Anodes. Small, 2020, 16, e2003827.	10.0	21

#	Article	IF	CITATIONS
289	Dual Hybrid Effect Endowing Nickel–Cobalt Sulfides with Enhanced Cycling Stability for Asymmetrical Supercapacitors. ACS Applied Energy Materials, 2020, 3, 6977-6984.	5.1	21
290	CNTâ€Strung LiMn ₂ O ₄ for Lithium Extraction with High Selectivity and Stability. Small Methods, 2022, 6, e2200508.	8.6	21
291	Graphite-graphene architecture stabilizing ultrafine Co3O4 nanoparticles for superior oxygen evolution. Carbon, 2018, 140, 17-23.	10.3	20
292	Ultrafast Construction of Oxygen-Containing Scaffold over Graphite for Trapping Ni ²⁺ into Single Atom Catalysts. ACS Nano, 2020, 14, 11662-11669.	14.6	20
293	Tailoring of three-dimensional carbon nanotube architectures by coupling capillarity-induced assembly with multiple CVD growth. Journal of Materials Chemistry, 2011, 21, 5967.	6.7	19
294	NH ₄ V ₄ O ₁₀ /rGO Composite as a high-performance electrode material for hybrid capacitive deionization. Environmental Science: Water Research and Technology, 2020, 6, 303-311.	2.4	19
295	Gravity field-mediated synthesis of carbon-conjugated quantum dots with tunable defective density for enhanced triiodide reduction. Nano Energy, 2020, 69, 104377.	16.0	19
296	Synergizing Layered Carbon and Gel Electrolyte for Efficient Energy Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 4207-4215.	6.7	19
297	Achieving efficient electroreduction CO2 to CO in a wide potential range over pitch-derived ordered mesoporous carbon with engineered Ni-N sites. Journal of CO2 Utilization, 2020, 38, 212-219.	6.8	19
298	Electrolyte/Structure-Dependent Cocktail Mediation Enabling High-Rate/Low-Plateau Metal Sulfide Anodes for Sodium Storage. Nano-Micro Letters, 2021, 13, 178.	27.0	19
299	A tuned Lewis acidic catalyst guided by hard–soft acid–base theory to promote N ₂ electroreduction. Journal of Materials Chemistry A, 2021, 9, 13036-13043.	10.3	19
300	Insight into the Effects of Current Collectors and In Situ Ni Leaching in Highâ€Voltage Aqueous Supercapacitors. Advanced Functional Materials, 2022, 32, .	14.9	19
301	Synthesis of N/P co-doped monolithic hierarchical porous carbon for zinc-ion hybrid capacitors with boosted energy density in ZnSO4/ZnI2 redox electrolyte. Journal of Power Sources, 2022, 542, 231743.	7.8	19
302	Layer-dependent catalysis of MoS ₂ /graphene nanoribbon composites for efficient hydrodesulfurization. Catalysis Science and Technology, 2017, 7, 693-702.	4.1	18
303	Nitrogen-doped porous carbon with well-balanced charge conduction and electrocatalytic activity for dye-sensitized solar cells. Carbon, 2018, 128, 201-204.	10.3	18
304	Design Principles for Covalent Organic Frameworks to Achieve Strong Heteroatom-Synergistic Effect on Anchoring Polysulfides for Lithium–Sulfur Batteries. Journal of Physical Chemistry Letters, 2019, 10, 7445-7451.	4.6	18
305	A Phase Transformationâ€Resistant Electrode Enabled by a MnO ₂ â€Confined Effect for Enhanced Energy Storage. Advanced Functional Materials, 2019, 29, 1901342.	14.9	18
306	High-performance metal–iodine batteries enabled by a bifunctional dendrite-free Li–Na alloy anode. Journal of Materials Chemistry A, 2021, 9, 538-545.	10.3	18

#	Article	IF	Citations
307	Solar-driven simultaneous desalination and power generation enabled by graphene oxide nanoribbon papers. Journal of Materials Chemistry A, 2022, 10, 9184-9194.	10.3	17
308	Multi-walled carbon nanotubes supported Pt-Fe cathodic catalyst for direct methanol fuel cell. Reaction Kinetics and Catalysis Letters, 2004, 82, 235-240.	0.6	16
309	Recyclable catalyst for catalytic hydrogenation of phenylacetylene by coupling Pd nanoparticles with highly compressible graphene aerogels. RSC Advances, 2014, 4, 59977-59980.	3.6	16
310	An electrocatalyst with anti-oxidized capability for overall water splitting. Nano Research, 2018, 11, 3411-3418.	10.4	16
311	Insight into the impact of surface hydrothermal carbon layer on photocatalytic performance of ZnO nanowire. Applied Catalysis A: General, 2019, 583, 117145.	4.3	16
312	A Hierarchical-Structured Impeller with Engineered Pd Nanoparticles Catalyzing Suzuki Coupling Reactions for High-Purity Biphenyl. ACS Applied Materials & Samp; Interfaces, 2021, 13, 17429-17438.	8.0	16
313	Integration of Desulfurization and Lithium–Sulfur Batteries Enabled by Aminoâ€Functionalized Porous Carbon Nanofibers. Energy and Environmental Materials, 2023, 6, .	12.8	16
314	Nitrogen-doped hollow carbon nanoboxes in zwitterionic polymer hydrogel electrolyte for superior quasi-solid-state zinc-ion hybrid supercapacitors. Journal of Materials Chemistry A, 2022, 10, 12856-12868.	10.3	16
315	Quaternary Ammonium Compound Functionalized Activated Carbon Electrode for Capacitive Deionization Disinfection. ACS Sustainable Chemistry and Engineering, 2018, 6, 17204-17210.	6.7	15
316	Hydrogenâ€Bonding Triggered Assembly to Configure Hollow Carbon Nanosheets for Highly Efficient Tri″odide Reduction. Advanced Functional Materials, 2020, 30, 2006270.	14.9	15
317	Activated nitrogen-doped carbons from polyvinyl chloride for high-performance electrochemical capacitors. Journal of Solid State Electrochemistry, 2014, 18, 49-58.	2.5	14
318	Decoupling the role of carbon counterparts in Pickering emulsifier for an enhanced selective oxidation of benzyl alcohol. Green Chemistry, 2020, 22, 5711-5721.	9.0	14
319	Mechanochemical coordination self-assembly for Cobalt-based metal-organic framework-derived bifunctional oxygen electrocatalysts. Journal of Colloid and Interface Science, 2022, 613, 733-746.	9.4	14
320	Bio-inspired immobilization of metal oxides on monolithic microreactor for continuous Knoevenagel reaction. Journal of Colloid and Interface Science, 2016, 481, 100-106.	9.4	13
321	Synthesis of 3D Flowerâ€like Nanocomposites of Nitrogenâ€Doped Carbon Nanosheets Embedded with Hollow Cobalt(II,III) Oxide Nanospheres for Lithium Storage. ChemElectroChem, 2017, 4, 102-108.	3.4	13
322	DBD plasma-tuned functionalization of edge-enriched graphene nanoribbons for high performance supercapacitors. Electrochimica Acta, 2020, 337, 135741.	5.2	13
323	Activity descriptor of Ni,N-Codoped carbon electrocatalyst in CO2 electroreduction reaction. Chemical Engineering Journal, 2022, 433, 131965.	12.7	13
324	Engineering local environment of ruthenium by defect-tuned SnO2 over carbon cloth for neutral-media N2 electroreduction. Carbon, 2022, 195, 199-206.	10.3	13

#	Article	IF	Citations
325	Preparing electrochemical active hierarchically porous carbons for detecting nitrite in drinkable water. RSC Advances, 2016, 6, 7302-7309.	3.6	12
326	Hierarchical Bimetallic Hydroxides Built by Porous Nanowire‣apped Bundles with Ultrahigh Areal Capacity for Stable Hybrid Solidâ€State Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1900959.	3.7	12
327	Fabrication of Porous Carbon Nanosheets with the Engineered Graphitic Structure for Electrochemical Supercapacitors. Industrial & Engineering Chemistry Research, 2020, 59, 13623-13630.	3.7	12
328	A facile soft-template synthesis of nitrogen dopedÂmesoporous carbons for hydrogen sulfide removal. Adsorption, 2016, 22, 1075-1082.	3.0	11
329	Synthesis of highly oriented stacked tile-like carbon sheet for potassium storage. Materials Letters, 2020, 277, 128134.	2.6	11
330	Achieving Multiple and Tunable Ratios of Syngas to Meet Various Downstream Industrial Processes. ACS Sustainable Chemistry and Engineering, 2020, 8, 3328-3335.	6.7	11
331	Correlation between self-discharge behavior and heteroatoms over doped carbon sheets for enhanced pseudocapacitance. Journal of Energy Chemistry, 2022, 72, 291-298.	12.9	11
332	Fabrication, magnetic properties and self-assembly of hierarchical crystalline hexapod magnetites. RSC Advances, 2012, 2, 4329.	3.6	10
333	Preparation of Single-Walled Carbon Nanotubes from Fullerene Waste Soot. ACS Sustainable Chemistry and Engineering, 2014, 2, 14-18.	6.7	10
334	Theoretical and Experimental Insights into the Effects of Oxygen-Containing Species within CNTs toward Triiodide Reduction. ACS Sustainable Chemistry and Engineering, 2019, 7, 7527-7534.	6.7	10
335	Mechanochemistry-driven prelinking enables ultrahigh nitrogen-doping in carbon materials for triiodide reduction. Nano Energy, 2021, 89, 106332.	16.0	10
336	Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angewandte Chemie, 2022, 134, .	2.0	10
337	Preparing a highly dispersed catalyst supported on mesoporous microspheres via the self-assembly of amphiphilic ligands for the recovery of ultrahigh concentration wastewater. Journal of Materials Chemistry A, 2016, 4, 6304-6312.	10.3	9
338	Energy Accumulation Enabling Fast Synthesis of Intercalated Graphite and Operando Decoupling for Lithium Storage. Advanced Functional Materials, 2021, 31, 2009801.	14.9	9
339	A theoretical forecast of the hydrogen bond changes in the electronic excited state for BN and its derivatives. Open Physics, 2012, 10, .	1.7	8
340	A Lowâ€Temperature Dehydration Carbonâ€Fixation Strategy for Lignocelluloseâ€Based Hierarchical Porous Carbon for Supercapacitors. ChemSusChem, 2022, 15, .	6.8	8
341	Electric-Field-Triggered Graphene Production: From Fundamental Energy Applications to Perspectives. Accounts of Materials Research, 2022, 3, 175-186.	11.7	8
342	Interlayerâ€Expanded Titanate Hierarchical Hollow Spheres Embedded in Carbon Nanofibers for Enhanced Na Storage. Small, 2022, 18, e2107890.	10.0	8

#	Article	IF	Citations
343	Microporous carbon membranes from sulfonated poly(phthalazinone ether sulfone ketone): Preparation, characterization, and gas permeation. Journal of Applied Polymer Science, 2011, 122, 1190-1197.	2.6	7
344	Improvements of heat resistance and adhesive property of condensed poly-nuclear aromatic resin via epoxy resin modification. Petroleum Science, 2014, 11, 578-583.	4.9	7
345	Effect of a heat pretreatment on the structure and properties of carbon supports for carbon membranes. Canadian Journal of Chemical Engineering, 2017, 95, 2112-2119.	1.7	7
346	Template-free synthesis of interconnected carbon nanosheets <i>via</i> cross-linking coupled with annealing for high-efficiency triiodide reduction. Green Chemistry, 2018, 20, 250-254.	9.0	7
347	A Câ€S Linkageâ€Triggered Ultrahigh Nitrogenâ€Doped Carbon and the Identification of Active Site in Triiodide Reduction. Angewandte Chemie, 2021, 133, 3631-3639.	2.0	7
348	Interconnected polyaniline clusters constructed from nanowires: Confined polymerization and electrochemical properties. Journal of Materials Research, 2014, 29, 2408-2415.	2.6	6
349	Process Intensification of the Hydrogen Production Reaction Using a Carbon Membrane Reactor: Kinetics Analysis. Energy Technology, 2017, 5, 1990-1997.	3.8	6
350	Multilevel Coupled Hybrids Made of Porous Cobalt Oxides and Graphene for Highâ€Performance Lithium Storage. Chemistry - A European Journal, 2019, 25, 5527-5533.	3.3	6
351	Monolithic carbon nanosheets with rich pores for high-capacitance supercapacitor. Journal of Porous Materials, 2020, 27, 487-494.	2.6	6
352	Interface Inversion: A Promising Strategy to Configure Ultrafine Nanoparticles over Graphene for Fast Sodium Storage. Small, 2021, 17, 2005119.	10.0	6
353	A nickel-nitrogen-doped carbon foam as monolithic electrode for highly efficient CO2 electroreduction. Journal of CO2 Utilization, 2021, 49, 101549.	6.8	6
354	SnF ₂ atalyzed Formation of Polymerized Dioxolane as Solid Electrolyte and its Thermal Decomposition Behavior. Angewandte Chemie, 2022, 134, .	2.0	6
355	Insight into the Inhibition of Shuttle by Metal-Modified Covalent Triazine Frameworks and Graphene Composites with the Solvent Interaction in Lithium Sulfur Batteries. ACS Applied Energy Materials, 2022, 5, 825-831.	5.1	6
356	Multilayer-Dense Porous Carbon Nanosheets with High Volumetric Capacitance for Supercapacitors. Industrial & Description of the Research, 2022, 61, 8908-8917.	3.7	6
357	Carbon Nanomeshes: Thin‧heet Carbon Nanomesh with an Excellent Electrocapacitive Performance (Adv. Funct. Mater. 34/2015). Advanced Functional Materials, 2015, 25, 5406-5406.	14.9	5
358	Why Wasn't My <i>ACS Sustainable Chemistry & Engineering </i> Manuscript Sent Out for Review?. ACS Sustainable Chemistry and Engineering, 2019, 7, 1-2.	6.7	5
359	Silicaâ€Assisted Fabrication of Nâ€doped Porous Carbon for Efficient Electrocatalytic Nitrogen Fixation. ChemCatChem, 2020, 12, 3453-3458.	3.7	5
360	Highly efficient & Description amp; economic synthesis of CoS1.097/nitrogen-doped carbon for enhanced triiodide reduction. Carbon, 2021, 174, 445-450.	10.3	5

#	Article	IF	Citations
361	Preparation of graphene from Taixi anthracite and its photocatalyst performance for CO ₂ conversion. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2014, 228, 61-64.	0.1	4
362	Graphene Nanoribbons: Nitrogenâ€Doped Graphene Nanoribbons with Surface Enriched Active Sites and Enhanced Performance for Dyeâ€Sensitized Solar Cells (Adv. Energy Mater. 11/2015). Advanced Energy Materials, 2015, 5, .	19.5	4
363	CoMn Layered Double Hydroxides/Carbon Nanotubes Architectures as High-Performance Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem, 2016, 3, 850-850.	3.4	4
364	Nanohybrids: Stabilizing the MXenes by Carbon Nanoplating for Developing Hierarchical Nanohybrids with Efficient Lithium Storage and Hydrogen Evolution Capability (Adv. Mater. 24/2017). Advanced Materials, 2017, 29, .	21.0	4
365	The Electrolysis of Antiâ€Perovskite Li ₂ OHCl for Prelithiation of Highâ€Energyâ€Density Batteries. Angewandte Chemie, 2021, 133, 13123-13130.	2.0	4
366	Salinityâ€Differenceâ€Driven Power Generation by a Hybrid Capacitive Approach. Energy Technology, 2018, 6, 238-241.	3.8	4
367	Passivating the pHâ€Responsive Sites to Configure a Widely pHâ€Stable Emulsifier for Highâ€Efficiency Benzyl Alcohol Oxidation. ChemSusChem, 2022, 15, .	6.8	4
368	Pore structure prediction of coal-based microfiltration carbon membranes. Science Bulletin, 2010, 55, 1325-1330.	1.7	3
369	Electrocatalysts: Mass and Charge Transfer Coenhanced Oxygen Evolution Behaviors in CoFe-Layered Double Hydroxide Assembled on Graphene (Adv. Mater. Interfaces 7/2016). Advanced Materials Interfaces, 2016, 3, .	3.7	3
370	A Dual Component Catalytic System Composed of Nonâ€Noble Metal Oxides for Li–O ₂ Batteries with Enhanced Cyclability. Particle and Particle Systems Characterization, 2016, 33, 228-234.	2.3	3
371	Coaxial heterojunction carbon nanofibers with charge transport and electrocatalytic reduction phases for high performance dye-sensitized solar cells. RSC Advances, 2018, 8, 7040-7043.	3.6	3
372	Lowâ€Temperature Fast Production of Carbon and Acetic Acid Dualâ€Promoted Pd/C Catalysts. Chemistry - A European Journal, 2019, 25, 13683-13687.	3.3	3
373	Supercapacitors: 3D Architecture Materials Made of NiCoAl-LDH Nanoplates Coupled with NiCo-Carbonate Hydroxide Nanowires Grown on Flexible Graphite Paper for Asymmetric Supercapacitors (Adv. Energy Mater. 18/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	19.5	2
374	Monolithic Electrodes: Ultrafast Selfâ€Assembly of Graphene Oxideâ€Induced Monolithic NiCoâ€"Carbonate Hydroxide Nanowire Architectures with a Superior Volumetric Capacitance for Supercapacitors (Adv. Funct. Mater. 14/2015). Advanced Functional Materials, 2015, 25, 2203-2203.	14.9	2
375	Facile one-step synthesis of highly graphitized hierarchical porous carbon nanosheets with large surface area and high capacity for lithium storage. RSC Advances, 2016, 6, 51146-51152.	3.6	2
376	Sodiumâ€lon Batteries: Ultrafine MoO ₂ â€Carbon Microstructures Enable Ultralongâ€Life Powerâ€Type Sodium Ion Storage by Enhanced Pseudocapacitance (Adv. Energy Mater. 15/2017). Advanced Energy Materials, 2017, 7, .	19.5	2
377	A simple oneâ€step dropâ€coating approach on fabrication of supported carbon molecular sieve membranes with high gas separation performance. Asia-Pacific Journal of Chemical Engineering, 2018, 13, e2251.	1.5	2
378	Sidewall fluorination and hydrogenation of single-walled carbon nanotubes: a density functional theory study. Frontiers of Physics in China, 2009, 4, 393-397.	1.0	1

#	Article	IF	CITATIONS
379	Supercapacitors: Highâ€Stackingâ€Density, Superiorâ€Roughness LDH Bridged with Vertically Aligned Graphene for Highâ€Performance Asymmetric Supercapacitors (Small 37/2017). Small, 2017, 13, .	10.0	1
380	Structural characterization and properties of ODPA–ODA polyetherimide membranes modified by ethylene glycol. Polymer Bulletin, 2018, 75, 5825-5842.	3.3	1
381	Glutamic acid-assisted hydrothermal recrystallization to configure bamboo-like carbon nanotubes for improved triiodide reduction. Chinese Journal of Chemical Engineering, 2021, 37, 159-167.	3.5	1
382	Direct Synthesis of Ultrathin Two-Dimensional Co-Based Metal–Organic Framework Membranes by the Conversion of Co(OH) ₂ Sheets for Gas Separation. Industrial & Engineering Chemistry Research, 2022, 61, 9847-9855.	3.7	1
383	Graphene Oxide: Ultrafast Fabrication of Covalently Cross-linked Multifunctional Graphene Oxide Monoliths (Adv. Funct. Mater. 31/2014). Advanced Functional Materials, 2014, 24, 4914-4914.	14.9	0
384	Graphene: Sulfonated Graphene as Cationâ€Selective Coating: A New Strategy for Highâ€Performance Membrane Capacitive Deionization (Adv. Mater. Interfaces 16/2015). Advanced Materials Interfaces, 2015, 2, .	3.7	0
385	Strongly Coupled Architectures of Cobalt Phosphide Nanoparticles Assembled on Graphene as Bifunctional Electrocatalysts for Water Splitting. ChemElectroChem, 2016, 3, 681-681.	3.4	0
386	<i>Operando</i> Leaching of Pre-Incorporated Al and Mechanism in Transition Metal Hybrids for Elaborately Enhanced Charge Storage. SSRN Electronic Journal, 0, , .	0.4	0
387	Frontispiece: A Câ€S Linkageâ€Triggered Ultrahigh Nitrogenâ€Doped Carbon and the Identification of Active Site in Triiodide Reduction. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
388	Frontispiz: A Câ€S Linkageâ€Triggered Ultrahigh Nitrogenâ€Doped Carbon and the Identification of Active Site in Triiodide Reduction. Angewandte Chemie, 2021, 133, .	2.0	0
389	Interlayerâ€Expanded Titanate Hierarchical Hollow Spheres Embedded in Carbon Nanofibers for Enhanced Na Storage (Small 16/2022). Small, 2022, 18, .	10.0	0
390	Rechargeable Aqueous Mnâ€Metal Battery Enabled by Inorganic–Organic Interfaces. Angewandte Chemie, 2022, 134, .	2.0	0