Sergey I Popkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7712002/publications.pdf

Version: 2024-02-01

623734 713466 72 611 14 21 citations g-index h-index papers 72 72 72 265 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	General Regularities and Differences in the Behavior of the Dynamic Magnetization Switching of Ferrimagnetic (CoFe2O4) and Antiferromagnetic (NiO) Nanoparticles. Physics of the Solid State, 2020, 62, 1518-1524.	0.6	4
2	Synthesis and Magnetic Properties of the Core–Shell Fe3O4/CoFe2O4 Nanoparticles. Physics of the Solid State, 2020, 62, 285-290.	0.6	6
3	Features of the Pulsed Magnetization Switching in a High-Coercivity Material Based on Îμ-Fe2O3 Nanoparticles. Physics of the Solid State, 2020, 62, 445-453.	0.6	4
4	Physical Properties of a Frustrated Quasi-One-Dimensional NaCuFe2(VO4)3 Magnet and Effect of Chemical Pressure Induced by the Substitution of Sodium for Lithium. Physics of the Solid State, 2020, 62, 297-307.	0.6	1
5	Forming High-Temperature Superconducting Layers at the Interfaces between Nonsuperconducting Phases. Technical Physics Letters, 2020, 46, 1004-1007.	0.7	O
6	Dynamic Magnetization Switching in NiO Nanoparticles: Pulsed Field Magnetometry Study. Journal of Superconductivity and Novel Magnetism, 2019, 32, 405-411.	1.8	6
7	Size effects in the formation of an uncompensated ferromagnetic moment in NiO nanoparticles. Journal of Applied Physics, 2019, 126, .	2.5	27
8	Superconductivity on Interfaces of Nonsuperconducting Granules La2CuO4 and La1.56Sr0.44CuO4. Journal of Superconductivity and Novel Magnetism, 2018, 31, 3867-3874.	1.8	6
9	Pulsed Field-Induced Magnetization Switching in Antiferromagnetic Ferrihydrite Nanoparticles. Physics of the Solid State, 2018, 60, 1973-1978.	0.6	13
10	Bacterial Ferrihydrite Nanoparticles: Preparation, Magnetic Properties, and Application in Medicine. Journal of Superconductivity and Novel Magnetism, 2018, 31, 2297-2304.	1.8	29
11	A Capacitive Dilatometer for Measuring the Magnetostriction, Piezoelectric Effect, and Linear Thermal-Expansion Coefficient. Technical Physics Letters, 2018, 44, 123-125.	0.7	4
12	Temperature behavior of the antiferromagnetic susceptibility of nanoferrihydrite from the measurements of the magnetization curves in fields of up to 250 kOe. Physics of the Solid State, 2017, 59, 1940-1946.	0.6	16
13	Magnetic properties of NiO nano particles: Contributions of the antiferromagnetic and ferromagnetic subsystems in different magnetic field ranges up to 250 kOe. Physics of the Solid State, 2017, 59, 1547-1552.	0.6	12
14	Exchange bias in nano-ferrihydrite. Journal of Applied Physics, 2016, 120, .	2.5	19
15	Specific features of magnetic properties of ferrihydrite nanoparticles of bacterial origin: A shift of the hysteresis loop. Physics of the Solid State, 2016, 58, 287-292.	0.6	10
16	Pulsed solenoid with nanostructured Cu-Nb wire winding. Journal of Surface Investigation, 2015, 9, 111-115.	0.5	6
17	Positive magnetoresistance of single-crystal bilayer manganites (La _{1â^²z} Nd _z) _{1.4} Sr _{1.6} Mn ₂ O ₇ (z = 0, 0.1). Journal of Applied Physics, 2015, 117, 163918.	2.5	3
18	Increase in the magnetization loop width in the Ba0.6K0.4BiO3 superconductor: Possible manifestation of phase separation. Journal of Experimental and Theoretical Physics, 2014, 118, 104-110.	0.9	5

#	Article	IF	CITATIONS
19	Magnetic and dielectric properties of the PbFeBO4 single crystal. Journal of Magnetism and Magnetic Materials, 2014, 353, 23-28.	2.3	17
20	Magnetoresistance of porous polycrystalline HTSC: Effect of the transport current on magnetic flux compression in intergranular medium. Physics of the Solid State, 2014, 56, 1542-1547.	0.6	8
21	Current-conducting properties of paper consisting of multiwall carbon nanotubes. Journal of Experimental and Theoretical Physics, 2013, 116, 860-865.	0.9	3
22	Magnetic phase diagram of the olivine-type Mn2GeO4single crystal estimated from magnetic, resonance and thermodynamic properties. Journal of Physics Condensed Matter, 2013, 25, 136003.	1.8	6
23	Specific features in the hysteretic behavior of the magnetoresistance of granular high-temperature superconductors. Physics of the Solid State, 2012, 54, 2155-2164.	0.6	13
24	Relaxation of magnetoresistance of single-crystalline (La0.5Eu0.5)0.7Pb0.3MnO3 in a pulsed magnetic field. Technical Physics Letters, 2012, 38, 1080-1082.	0.7	1
25	Magnetoresistance of substituted lanthanum manganites La0.7Ca0.3MnO3upon nonequilibrium overheating of carriers. Journal of Applied Physics, 2011, 109, 083711.	2.5	2
26	General regularities of magnetoresistive effects in the polycrystalline yttrium and bismuth high-temperature superconductor systems. Physics of the Solid State, 2011, 53, 922-932.	0.6	29
27	Current-voltage characteristics of polycrystalline (La0.5Eu0.5)0.7Pb0.3MnO3 at low temperatures. Physics of the Solid State, 2011, 53, 2455-2458.	0.6	1
28	Pinning in a porous high-temperature superconductor Bi2223. Physics of the Solid State, 2011, 53, 2409-2414.	0.6	13
29	Contributions from Inter-grain Boundaries to the Magneto-resistive Effect in Polycrystalline High-T C Superconductors. The Underlying Reason of Different Behavior for YBCO and BSCCO Systems. Journal of Superconductivity and Novel Magnetism, 2011, 24, 2129-2136.	1.8	10
30	Low-temperature resistance and magnetoresistance hysteresis in polycrystalline (La0.5Eu0.5)0.7Pb0.3MnO3. Journal of Applied Physics, 2011, 109, 053711.	2.5	6
31	Compression of a magnetic flux in the intergrain medium of a YBa2Cu3O7 granular superconductor from magnetic and magnetoresistive measurements. Journal of Applied Physics, 2011, 110, 093918.	2.5	20
32	Magnetization asymmetry of type-II superconductors in high magnetic fields. Journal of Applied Physics, 2011, 109, .	2.5	40
33	Relaxation of low-temperature magnetoresistance and magnetization of polycrystalline (La0.5Eu0.5)0.7Pb0.3MnO3. Journal Physics D: Applied Physics, 2011, 44, 255001.	2.8	1
34	Low-temperature resistivity of polycrystalline (La _{0.5} Eu _{0.5}) _{)_{Pb_{0.3}MnO₃in a magnetic fields. Journal of Physics: Conference Series, 2010, 200, 052025.}}	0.4	6
35	Nonmonotonic behavior of magnetoresistance, R(H) hysteresis, and low-temperature heat capacity of the BaPb0.75Bi0.25O3 superconductor in a magnetic field: Possible manifestations of phase separation. Journal of Experimental and Theoretical Physics, 2010, 110, 584-593.	0.9	4
36	Asymmetry of magnetization curves of textured BSCCO. Physica C: Superconductivity and Its Applications, 2010, 470, S870-S872.	1.2	0

#	Article	IF	CITATIONS
37	Non-linear current–voltage characteristics of (La0.5Eu0.5)0.7Pb0.3MnO3 single crystals: Possible manifestation of the internal heating of chargecarriers. Physica B: Condensed Matter, 2010, 405, 4961-4965.	2.7	4
38	Magnetoresistance hysteresis of bulk textured Bi1.8Pb0.3Sr1.9Ca2Cu3Ox+Ag ceramics and its anisotropy. Physica C: Superconductivity and Its Applications, 2010, 470, 61-67.	1.2	16
39	Features of the low-temperature specific heat in underdoped YBa2Cu3O6 + x single crystals. JETP Letters, 2010, 92, 332-337.	1.4	4
40	Mechanism of the hysteretic behavior of the magnetoresistance of granular HTSCs: The universal nature of the width of the magnetoresistance hysteresis loop. Journal of Experimental and Theoretical Physics, 2009, 108, 241-248.	0.9	28
41	Mechanism of formation of a negative magnetoresistance region in granular high-temperature superconductors. Physics of the Solid State, 2009, 51, 1105-1109.	0.6	13
42	Increase in the diamagnetic response from low-density Bi1.8Pb0.3Sr1.9Ca2Cu3O \times high-temperature superconductors and Bi1.8Pb0.3Sr1.9Ca2Cu3O \times + Ag composites. Technical Physics, 2009, 54, 1130-1134.	0.7	4
43	The effect of magnetisation relaxation of superconducting grains on time relaxation of the resistance of granular HTSC in constant applied magnetic field. Journal of Physics: Conference Series, 2009, 150, 052012.	0.4	O
44	Magnetic Field Dependence of Intergrain Pinning Potential inÂBulk Granular Composites YBCO + CuO Demonstrating Large Magneto-Resistive Effect. Journal of Superconductivity and Novel Magnetism, 2008, 21, 243-247.	1.8	10
45	Peculiarities of the time evolution of magnetoresistance of granular HTSC in a constant applied magnetic field. Solid State Communications, 2008, 147, 284-287.	1.9	1
46	Relaxation of the remanent resistance of granular HTSC Y-Ba-Cu-O + CuO composites after magnetic field treatment. Physics of the Solid State, 2008, 50, 1014-1021.	0.6	7
47	Pinning enhancement by heterovalent substitution in Y _{1â^^(i>xb>1â^^(i>xb>0_{7â^^î^(sub>. Superconductor Science and Technology, 2008, 21, 085015.}}	3.5	11
48	Preparation, microstructure, magnetic and transport properties of bulk textured Bi _{1.8} Pb _{0.3} Sr _{1.9} Ca ₂ Cu ₃ O _{<i>x</i>} Bi _{1.8} Pb _{0.3} Sr _{1.9} Ca ₂ Cu ₃ O _{<i>x</i>} + ceramics. Superconductor Science and Technology, 2008, 21, 105019.	ınd -Ağ	11
49	Thermally activated dissipation in a novel foamed Bi-based oxide superconductor in magnetic fields. Superconductor Science and Technology, 2007, 20, 491-494.	3.5	17
50	Hysteretic behavior of the magnetoresistance and the critical current of bulk Y3/4Lu1/4Ba2Cu3O7+CuO composites in a magnetic field. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1307-1308.	1.2	1
51	Time relaxation of residual resistance of HTSC-based composites. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1309-1310.	1.2	5
52	Crossover from S–l–S to S–F–S junctions in composites Y3/4Lu1/4Ba2Cu3O7+Y3(Al1â~xFex)5O12. Physic: Superconductivity and Its Applications, 2007, 460-462, 1311-1312.	ica 1.2	0
53	Magnetoresistance hysteresis in granular HTSCs as a manifestation of the magnetic flux trapped by superconducting grains in YBCO + CuO composites. Journal of Experimental and Theoretical Physics, 2007, 105, 1174-1183.	0.9	27
54	Highly textured bismuth-containing high-temperature superconductor ceramics obtained by uniaxial pressing in liquid medium: Fabrication and properties. Technical Physics Letters, 2007, 33, 740-743.	0.7	3

#	Article	IF	CITATIONS
55	Current–voltage characteristics of break junctions of high-Tc superconductors. Physica C: Superconductivity and Its Applications, 2007, 467, 80-84.	1.2	4
56	Magnetization loop and critical current of porous Bi-based HTS. Physica C: Superconductivity and Its Applications, 2006, 434, 135-137.	1.2	20
57	Study of current–voltage characteristics of Bi-based high-temperature superconductors with fractal cluster structure. Physica C: Superconductivity and Its Applications, 2006, 435, 19-22.	1.2	4
58	The mechanisms responsible for broadening of the resistive transition under magnetic field in the Josephson junction network realized in bulk YBCO+CuO composites. Physica C: Superconductivity and Its Applications, 2006, 435, 12-15.	1,2	9
59	Current-controlled magneto-resistive effect in bulk Y-Ba-Cu-O + CuO composites and their application as magnetic-field sensors at 77 K. Physics of Metals and Metallography, 2006, 101, S24-S26.	1.0	0
60	Magnetic properties of a low-density Bi-based HTSC. Physics of Metals and Metallography, 2006, 101, S29-S32.	1.0	1
61	Current-voltage characteristics of a foamed Bi1.8Pb0.3Sr2Ca2Cu3O x high-temperature superconductor with fractal cluster structure. Physics of the Solid State, 2006, 48, 207-212.	0.6	9
62	Mechanisms of dissipation in a Josephson medium based on a high-temperature superconductor in a magnetic field. Physics of the Solid State, 2006, 48, 826-832.	0.6	4
63	Investigation of the Josephson coupling through a magnetoactive barrier (ferrimagnet, paramagnet) in Y3/4Lu1/4Ba2Cu3O7 + Y3(Al1 â° x Fe x)5O12 composites. Physics of the Solid State, 2006, 48, 2046-2055.	0.6	0
64	The synthesis, microstructure, transport and magnetic properties of Bi-based low density HTSC. Journal of Materials Processing Technology, 2005, 161, 58-61.	6.3	4
65	Magnetoresistive effect in bulk composites 1-2-3 YBCO + CuO and 1-2-3 YBCO + BaPb1ÂxSnxO3and their application as magnetic field sensors at 77 K. Superconductor Science and Technology, 2004, 17, 175-181.	3.5	20
66	Title is missing!. Journal of Low Temperature Physics, 2003, 130, 347-381.	1.4	1
67	The effect of ferrimagnetic ordering in insulating component of composites HTSC+Yttrium Iron Garnet on its transport properties. Solid State Communications, 2003, 125, 281-285.	1.9	0
68	Controlled magnetoresistance in Y3/4Lu1/4Ba2Cu3O7-CuO composites at 77 K. Technical Physics Letters, 2003, 29, 578-581.	0.7	1
69	Transport and magnetic properties of Y3/4Lu1/4Ba2Cu3O7 + Y3Fe5O12 composites representing a Josephson-type superconductor-ferrimagnet-superconductor weak-link network. Physics of the Solid State, 2003, 45, 1866-1873.	0.6	1
70	Synthesis, microstructure, and the transport and magnetic properties of Bi-containing high-temperature superconductors with a porous structure. Technical Physics Letters, 2003, 29, 986-988.	0.7	14
71	Anomalous transport properties of a paramagnetic NiTiO3 + HTSC two-phase system representing a random Josephson junction network. JETP Letters, 2002, 75, 138-141.	1.4	0
72	High-temperature superconductor based composites: Large magnetoresistance in weak magnetic fields. Technical Physics Letters, 2001, 27, 952-955.	0.7	6