
## Sergey I Popkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7712002/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Magnetization asymmetry of type-II superconductors in high magnetic fields. Journal of Applied<br>Physics, 2011, 109, .                                                                                                           | 1.1 | 40        |
| 2  | General regularities of magnetoresistive effects in the polycrystalline yttrium and bismuth high-temperature superconductor systems. Physics of the Solid State, 2011, 53, 922-932.                                               | 0.2 | 29        |
| 3  | Bacterial Ferrihydrite Nanoparticles: Preparation, Magnetic Properties, and Application in Medicine.<br>Journal of Superconductivity and Novel Magnetism, 2018, 31, 2297-2304.                                                    | 0.8 | 29        |
| 4  | Mechanism of the hysteretic behavior of the magnetoresistance of granular HTSCs: The universal nature of the width of the magnetoresistance hysteresis loop. Journal of Experimental and Theoretical Physics, 2009, 108, 241-248. | 0.2 | 28        |
| 5  | Magnetoresistance hysteresis in granular HTSCs as a manifestation of the magnetic flux trapped by superconducting grains in YBCO + CuO composites. Journal of Experimental and Theoretical Physics, 2007, 105, 1174-1183.         | 0.2 | 27        |
| 6  | Size effects in the formation of an uncompensated ferromagnetic moment in NiO nanoparticles.<br>Journal of Applied Physics, 2019, 126, .                                                                                          | 1.1 | 27        |
| 7  | Magnetoresistive effect in bulk composites 1-2-3 YBCO + CuO and 1-2-3 YBCO + BaPb1ÂxSnxO3and their<br>application as magnetic field sensors at 77 K. Superconductor Science and Technology, 2004, 17, 175-181.                    | 1.8 | 20        |
| 8  | Magnetization loop and critical current of porous Bi-based HTS. Physica C: Superconductivity and Its<br>Applications, 2006, 434, 135-137.                                                                                         | 0.6 | 20        |
| 9  | Compression of a magnetic flux in the intergrain medium of a YBa2Cu3O7 granular superconductor from magnetic and magnetoresistive measurements. Journal of Applied Physics, 2011, 110, 093918.                                    | 1.1 | 20        |
| 10 | Exchange bias in nano-ferrihydrite. Journal of Applied Physics, 2016, 120, .                                                                                                                                                      | 1.1 | 19        |
| 11 | Thermally activated dissipation in a novel foamed Bi-based oxide superconductor in magnetic fields.<br>Superconductor Science and Technology, 2007, 20, 491-494.                                                                  | 1.8 | 17        |
| 12 | Magnetic and dielectric properties of the PbFeBO4 single crystal. Journal of Magnetism and Magnetic<br>Materials, 2014, 353, 23-28.                                                                                               | 1.0 | 17        |
| 13 | Magnetoresistance hysteresis of bulk textured Bi1.8Pb0.3Sr1.9Ca2Cu3Ox+Ag ceramics and its anisotropy. Physica C: Superconductivity and Its Applications, 2010, 470, 61-67.                                                        | 0.6 | 16        |
| 14 | Temperature behavior of the antiferromagnetic susceptibility of nanoferrihydrite from the<br>measurements of the magnetization curves in fields of up to 250 kOe. Physics of the Solid State, 2017,<br>59, 1940-1946.             | 0.2 | 16        |
| 15 | Synthesis, microstructure, and the transport and magnetic properties of Bi-containing<br>high-temperature superconductors with a porous structure. Technical Physics Letters, 2003, 29,<br>986-988.                               | 0.2 | 14        |
| 16 | Mechanism of formation of a negative magnetoresistance region in granular high-temperature superconductors. Physics of the Solid State, 2009, 51, 1105-1109.                                                                      | 0.2 | 13        |
| 17 | Pinning in a porous high-temperature superconductor Bi2223. Physics of the Solid State, 2011, 53, 2409-2414.                                                                                                                      | 0.2 | 13        |
| 18 | Specific features in the hysteretic behavior of the magnetoresistance of granular high-temperature superconductors. Physics of the Solid State, 2012, 54, 2155-2164.                                                              | 0.2 | 13        |

SERGEY I POPKOV

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                 | IF        | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 19 | Pulsed Field-Induced Magnetization Switching in Antiferromagnetic Ferrihydrite Nanoparticles.<br>Physics of the Solid State, 2018, 60, 1973-1978.                                                                                                                                                                                                                                       | 0.2       | 13        |
| 20 | Magnetic properties of NiO nano particles: Contributions of the antiferromagnetic and<br>ferromagnetic subsystems in different magnetic field ranges up to 250 kOe. Physics of the Solid State,<br>2017, 59, 1547-1552.                                                                                                                                                                 | 0.2       | 12        |
| 21 | Pinning enhancement by heterovalent substitution in<br>Y <sub>1â^<i>x</i></sub> RE <sub><i>x</i></sub> Ba <sub>2</sub> Cu <sub>3</sub> O <sub>7â^î</sub> .<br>Superconductor Science and Technology, 2008, 21, 085015.                                                                                                                                                                  | 1.8       | 11        |
| 22 | Preparation, microstructure, magnetic and transport properties of bulk textured<br>Bi <sub>1.8</sub> Pb <sub>0.3</sub> Sr <sub>1.9</sub> Ca <sub>2</sub> Cu <sub>3</sub> O <sub><i>x</i></sub> a<br>Bi <sub>1.8</sub> Pb <sub>0.3</sub> Sr <sub>1.9</sub> Ca <sub>2</sub> Cu <sub>3</sub> O <sub><i>x</i></sub> +<br>ceramics. Superconductor Science and Technology, 2008, 21, 105019. | and<br>Ag | 11        |
| 23 | Magnetic Field Dependence of Intergrain Pinning Potential inÂBulk Granular Composites YBCO + CuO<br>Demonstrating Large Magneto-Resistive Effect. Journal of Superconductivity and Novel Magnetism,<br>2008, 21, 243-247.                                                                                                                                                               | 0.8       | 10        |
| 24 | Contributions from Inter-grain Boundaries to the Magneto-resistive Effect in Polycrystalline High-T C<br>Superconductors. The Underlying Reason of Different Behavior for YBCO and BSCCO Systems. Journal<br>of Superconductivity and Novel Magnetism, 2011, 24, 2129-2136.                                                                                                             | 0.8       | 10        |
| 25 | Specific features of magnetic properties of ferrihydrite nanoparticles of bacterial origin: A shift of the hysteresis loop. Physics of the Solid State, 2016, 58, 287-292.                                                                                                                                                                                                              | 0.2       | 10        |
| 26 | The mechanisms responsible for broadening of the resistive transition under magnetic field in the<br>Josephson junction network realized in bulk YBCO+CuO composites. Physica C: Superconductivity and<br>Its Applications, 2006, 435, 12-15.                                                                                                                                           | 0.6       | 9         |
| 27 | Current-voltage characteristics of a foamed Bi1.8Pb0.3Sr2Ca2Cu3O x high-temperature superconductor with fractal cluster structure. Physics of the Solid State, 2006, 48, 207-212.                                                                                                                                                                                                       | 0.2       | 9         |
| 28 | Magnetoresistance of porous polycrystalline HTSC: Effect of the transport current on magnetic flux compression in intergranular medium. Physics of the Solid State, 2014, 56, 1542-1547.                                                                                                                                                                                                | 0.2       | 8         |
| 29 | Relaxation of the remanent resistance of granular HTSC Y-Ba-Cu-O + CuO composites after magnetic field treatment. Physics of the Solid State, 2008, 50, 1014-1021.                                                                                                                                                                                                                      | 0.2       | 7         |
| 30 | High-temperature superconductor based composites: Large magnetoresistance in weak magnetic fields.<br>Technical Physics Letters, 2001, 27, 952-955.                                                                                                                                                                                                                                     | 0.2       | 6         |
| 31 | Low-temperature resistivity of polycrystalline<br>(La <sub>0.5</sub> Eu <sub>0.5</sub> O.5O.7Pb <sub>0.3</sub> MnO <sub>3</sub> in a magnetic<br>fields. Journal of Physics: Conference Series, 2010, 200, 052025.                                                                                                                                                                      | 0.3       | 6         |
| 32 | Low-temperature resistance and magnetoresistance hysteresis in polycrystalline<br>(La0.5Eu0.5)0.7Pb0.3MnO3. Journal of Applied Physics, 2011, 109, 053711.                                                                                                                                                                                                                              | 1.1       | 6         |
| 33 | Magnetic phase diagram of the olivine-type Mn2GeO4single crystal estimated from magnetic, resonance and thermodynamic properties. Journal of Physics Condensed Matter, 2013, 25, 136003.                                                                                                                                                                                                | 0.7       | 6         |
| 34 | Pulsed solenoid with nanostructured Cu-Nb wire winding. Journal of Surface Investigation, 2015, 9, 111-115.                                                                                                                                                                                                                                                                             | 0.1       | 6         |
| 35 | Superconductivity on Interfaces of Nonsuperconducting Granules La2CuO4 and La1.56Sr0.44CuO4.<br>Journal of Superconductivity and Novel Magnetism, 2018, 31, 3867-3874.                                                                                                                                                                                                                  | 0.8       | 6         |
| 36 | Dynamic Magnetization Switching in NiO Nanoparticles: Pulsed Field Magnetometry Study. Journal of<br>Superconductivity and Novel Magnetism, 2019, 32, 405-411.                                                                                                                                                                                                                          | 0.8       | 6         |

SERGEY I POPKOV

| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Synthesis and Magnetic Properties of the Core–Shell Fe3O4/CoFe2O4 Nanoparticles. Physics of the Solid State, 2020, 62, 285-290.                                                                                                                                              | 0.2 | 6         |
| 38 | Time relaxation of residual resistance of HTSC-based composites. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1309-1310.                                                                                                                                | 0.6 | 5         |
| 39 | Increase in the magnetization loop width in the Ba0.6K0.4BiO3 superconductor: Possible manifestation of phase separation. Journal of Experimental and Theoretical Physics, 2014, 118, 104-110.                                                                               | 0.2 | 5         |
| 40 | The synthesis, microstructure, transport and magnetic properties of Bi-based low density HTSC.<br>Journal of Materials Processing Technology, 2005, 161, 58-61.                                                                                                              | 3.1 | 4         |
| 41 | Study of current–voltage characteristics of Bi-based high-temperature superconductors with fractal cluster structure. Physica C: Superconductivity and Its Applications, 2006, 435, 19-22.                                                                                   | 0.6 | 4         |
| 42 | Mechanisms of dissipation in a Josephson medium based on a high-temperature superconductor in a magnetic field. Physics of the Solid State, 2006, 48, 826-832.                                                                                                               | 0.2 | 4         |
| 43 | Current–voltage characteristics of break junctions of high-Tc superconductors. Physica C:<br>Superconductivity and Its Applications, 2007, 467, 80-84.                                                                                                                       | 0.6 | 4         |
| 44 | Increase in the diamagnetic response from low-density Bi1.8Pb0.3Sr1.9Ca2Cu3O x high-temperature superconductors and Bi1.8Pb0.3Sr1.9Ca2Cu3O x + Ag composites. Technical Physics, 2009, 54, 1130-1134.                                                                        | 0.2 | 4         |
| 45 | Nonmonotonic behavior of magnetoresistance, R(H) hysteresis, and low-temperature heat capacity of the BaPb0.75Bi0.25O3 superconductor in a magnetic field: Possible manifestations of phase separation. Journal of Experimental and Theoretical Physics, 2010, 110, 584-593. | 0.2 | 4         |
| 46 | Non-linear current–voltage characteristics of (La0.5Eu0.5)0.7Pb0.3MnO3 single crystals: Possible manifestation of the internal heating of chargecarriers. Physica B: Condensed Matter, 2010, 405, 4961-4965.                                                                 | 1.3 | 4         |
| 47 | Features of the low-temperature specific heat in underdoped YBa2Cu3O6 + x single crystals. JETP<br>Letters, 2010, 92, 332-337.                                                                                                                                               | 0.4 | 4         |
| 48 | A Capacitive Dilatometer for Measuring the Magnetostriction, Piezoelectric Effect, and Linear Thermal-Expansion Coefficient. Technical Physics Letters, 2018, 44, 123-125.                                                                                                   | 0.2 | 4         |
| 49 | General Regularities and Differences in the Behavior of the Dynamic Magnetization Switching of<br>Ferrimagnetic (CoFe2O4) and Antiferromagnetic (NiO) Nanoparticles. Physics of the Solid State, 2020,<br>62, 1518-1524.                                                     | 0.2 | 4         |
| 50 | Features of the Pulsed Magnetization Switching in a High-Coercivity Material Based on ε-Fe2O3<br>Nanoparticles. Physics of the Solid State, 2020, 62, 445-453.                                                                                                               | 0.2 | 4         |
| 51 | Highly textured bismuth-containing high-temperature superconductor ceramics obtained by uniaxial pressing in liquid medium: Fabrication and properties. Technical Physics Letters, 2007, 33, 740-743.                                                                        | 0.2 | 3         |
| 52 | Current-conducting properties of paper consisting of multiwall carbon nanotubes. Journal of Experimental and Theoretical Physics, 2013, 116, 860-865.                                                                                                                        | 0.2 | 3         |
| 53 | Positive magnetoresistance of single-crystal bilayer manganites<br>(La <sub>1â^²z</sub> Nd <sub>z</sub> ) <sub>1.4</sub> Sr <sub>1.6</sub> Mn <sub>2</sub> O <sub>7</sub><br>(z = 0, 0.1). Journal of Applied Physics, 2015, 117, 163918.                                    | 1.1 | 3         |
| 54 | Magnetoresistance of substituted lanthanum manganites La0.7Ca0.3MnO3upon nonequilibrium overheating of carriers. Journal of Applied Physics, 2011, 109, 083711.                                                                                                              | 1.1 | 2         |

Sergey I Popkov

| #  | Article                                                                                                                                                                                                                        | IF         | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 55 | Title is missing!. Journal of Low Temperature Physics, 2003, 130, 347-381.                                                                                                                                                     | 0.6        | 1         |
| 56 | Controlled magnetoresistance in Y3/4Lu1/4Ba2Cu3O7-CuO composites at 77 K. Technical Physics Letters, 2003, 29, 578-581.                                                                                                        | 0.2        | 1         |
| 57 | Transport and magnetic properties of Y3/4Lu1/4Ba2Cu3O7 + Y3Fe5O12 composites representing a<br>Josephson-type superconductor-ferrimagnet-superconductor weak-link network. Physics of the Solid<br>State, 2003, 45, 1866-1873. | 0.2        | 1         |
| 58 | Magnetic properties of a low-density Bi-based HTSC. Physics of Metals and Metallography, 2006, 101, S29-S32.                                                                                                                   | 0.3        | 1         |
| 59 | Hysteretic behavior of the magnetoresistance and the critical current of bulk Y3/4Lu1/4Ba2Cu3O7+CuO composites in a magnetic field. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1307-1308.               | 0.6        | 1         |
| 60 | Peculiarities of the time evolution of magnetoresistance of granular HTSC in a constant applied magnetic field. Solid State Communications, 2008, 147, 284-287.                                                                | 0.9        | 1         |
| 61 | Current-voltage characteristics of polycrystalline (La0.5Eu0.5)0.7Pb0.3MnO3 at low temperatures.<br>Physics of the Solid State, 2011, 53, 2455-2458.                                                                           | 0.2        | 1         |
| 62 | Relaxation of low-temperature magnetoresistance and magnetization of polycrystalline<br>(La0.5Eu0.5)0.7Pb0.3MnO3. Journal Physics D: Applied Physics, 2011, 44, 255001.                                                        | 1.3        | 1         |
| 63 | Relaxation of magnetoresistance of single-crystalline (La0.5Eu0.5)0.7Pb0.3MnO3 in a pulsed magnetic field. Technical Physics Letters, 2012, 38, 1080-1082.                                                                     | 0.2        | 1         |
| 64 | Physical Properties of a Frustrated Quasi-One-Dimensional NaCuFe2(VO4)3 Magnet and Effect of<br>Chemical Pressure Induced by the Substitution of Sodium for Lithium. Physics of the Solid State, 2020,<br>62, 297-307.         | 0.2        | 1         |
| 65 | Anomalous transport properties of a paramagnetic NiTiO3 + HTSC two-phase system representing a random Josephson junction network. JETP Letters, 2002, 75, 138-141.                                                             | 0.4        | 0         |
| 66 | The effect of ferrimagnetic ordering in insulating component of composites HTSC+Yttrium Iron Garnet on its transport properties. Solid State Communications, 2003, 125, 281-285.                                               | 0.9        | 0         |
| 67 | Current-controlled magneto-resistive effect in bulk Y-Ba-Cu-O + CuO composites and their application as magnetic-field sensors at 77 K. Physics of Metals and Metallography, 2006, 101, S24-S26.                               | 0.3        | 0         |
| 68 | Investigation of the Josephson coupling through a magnetoactive barrier (ferrimagnet, paramagnet) in<br>Y3/4Lu1/4Ba2Cu3O7 + Y3(Al1 â^' x Fe x )5O12 composites. Physics of the Solid State, 2006, 48, 2046-2055.               | 0.2        | 0         |
| 69 | Crossover from S–l–S to S–F–S junctions in composites Y3/4Lu1/4Ba2Cu3O7+Y3(Al1â^'xFex)5O12. Phys<br>C: Superconductivity and Its Applications, 2007, 460-462, 1311-1312.                                                       | ica<br>0.6 | 0         |
| 70 | The effect of magnetisation relaxation of superconducting grains on time relaxation of the resistance of granular HTSC in constant applied magnetic field. Journal of Physics: Conference Series, 2009, 150, 052012.           | 0.3        | 0         |
| 71 | Asymmetry of magnetization curves of textured BSCCO. Physica C: Superconductivity and Its Applications, 2010, 470, S870-S872.                                                                                                  | 0.6        | 0         |
| 72 | Forming High-Temperature Superconducting Layers at the Interfaces between Nonsuperconducting Phases. Technical Physics Letters, 2020, 46, 1004-1007.                                                                           | 0.2        | 0         |