Vincent Gandon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7711890/publications.pdf

Version: 2024-02-01

225 papers

7,928 citations

43973 48 h-index 72 g-index

307 all docs 307 docs citations

307 times ranked

4880 citing authors

#	Article	IF	CITATIONS
1	Recent progress in cobalt-mediated $[2 + 2 + 2]$ cycloaddition reactions. Chemical Communications, 2006, , 2209.	2.2	268
2	Goldâ€Catalyzed Crossâ€Couplings: New Opportunities for CC Bond Formation. ChemCatChem, 2010, 2, 493-497.	1.8	229
3	Generation and Trapping of Cyclopentenylidene Gold Species: Four Pathways to Polycyclic Compounds. Journal of the American Chemical Society, 2009, 131, 2993-3006.	6.6	226
4	Tandem Gold(I)-Catalyzed Cyclization/Electrophilic Cyclopropanation of Vinyl Allenes. Organic Letters, 2007, 9, 2207-2209.	2.4	175
5	Exploiting hexafluoroisopropanol (HFIP) in Lewis and Brønsted acid-catalyzed reactions. Chemical Communications, 2020, 56, 11548-11564.	2.2	166
6	Gold(I)- and Gold(III)-Catalyzed Cycloisomerization of Allenynes: A Remarkable Halide Effect. Angewandte Chemie - International Edition, 2006, 45, 7596-7599.	7.2	157
7	Cobalt-Catalyzed Cyclotrimerization of Alkynes:Â The Answer to the Puzzle of Parallel Reaction Pathways. Journal of the American Chemical Society, 2007, 129, 8860-8871.	6.6	154
8	Airâ€Stable {(C ₅ H ₅)Co} Catalysts for [2+2+2] Cycloadditions. Angewandte Chemie - International Edition, 2009, 48, 1810-1813.	7.2	135
9	Gold―and Platinumâ€Catalyzed Cycloisomerization of Enynyl Esters versus Allenenyl Esters: An Experimental and Theoretical Study. Chemistry - A European Journal, 2009, 15, 3243-3260.	1.7	129
10	The Role of Bent Acyclic Allene Gold Complexes in Axisâ€toâ€Center Chirality Transfers. Angewandte Chemie - International Edition, 2008, 47, 7534-7538.	7.2	125
11	Alkyne versus Allene Activation in Platinum―and Goldâ€Catalyzed Cycloisomerization of Hydroxylated 1,5â€Allenynes. Chemistry - A European Journal, 2008, 14, 1482-1491.	1.7	109
12	Silver and Brønsted Acid Catalyzed Nazarovâ€Type Cyclizations To Generate Benzofulvenes. Angewandte Chemie - International Edition, 2009, 48, 8757-8760.	7.2	99
13	Cobalt-Mediated Cyclic and Linear 2:1 Cooligomerization of Alkynes with Alkenes:Â A DFT Study. Journal of the American Chemical Society, 2006, 128, 8509-8520.	6.6	98
14	Goldâ€Catalyzed 1,3â€Acyloxy Migration/5â€ <i>exo</i> â€dig Cyclization/1,5â€Acyl Migration of Diynyl Esters. Angewandte Chemie - International Edition, 2011, 50, 6868-6871.	7.2	98
15	Tracking gold acetylides in gold(i)-catalyzed cycloisomerization reactions of enynes. Chemical Science, 2011, 2, 2417.	3.7	97
16	Synthesis of Fused Arylboronic Esters via Cobalt(0)-Mediated Cycloaddition of Alkynylboronates with $\hat{l}\pm,\hat{l}$ %-Diynes. Organic Letters, 2004, 6, 3405-3407.	2.4	91
17	Synthesis of Aminopyridines and Aminopyridones by Cobaltâ€Catalyzed [2+2+2] Cycloadditions Involving Yneâ€Ynamides: Scope, Limitations, and Mechanistic Insights. Chemistry - A European Journal, 2012, 18, 4337-4344.	1.7	82
18	A Gallium-Catalyzed Cycloisomerization/Friedelâ^'Crafts Tandem. Journal of Organic Chemistry, 2010, 75, 8435-8449.	1.7	81

#	Article	IF	CITATIONS
19	Copper Salts as Additives in Gold(I)â€Catalyzed Reactions. Angewandte Chemie - International Edition, 2013, 52, 5848-5852.	7.2	81
20	Enantioselective Ir ^I â€Catalyzed Carbocyclization of 1,6â€Enynes by the Chiral Counterion Strategy. Chemistry - A European Journal, 2011, 17, 13789-13794.	1.7	77
21	Synthesis of Tricyclic Fused 3â€Aminopyridines through Intramolecular Co ^I â€Catalyzed [2+2+2] Cycloaddition between Ynamides, Nitriles, and Alkynes. Chemistry - A European Journal, 2009, 15, 2129-2139.	1.7	76
22	Regioselective Cobalt-Catalyzed Formation of Bicyclic 3- and 4-Aminopyridines. Organic Letters, 2011, 13, 2030-2033.	2.4	74
23	Calcium(II)-Catalyzed Intra- and Intermolecular Hydroamidation of Unactivated Alkenes in Hexafluoroisopropanol. ACS Catalysis, 2018, 8, 1734-1739.	5.5	73
24	Cationic Gallium(III) Halide Complexes: A New Generation of Ï€â€Łewis Acids. Chemistry - A European Journal, 2012, 18, 10239-10243.	1.7	72
25	Experimental and Theoretical Studies on the Nazarov Cyclization/Wagner–Meerwein Rearrangement Sequence. Journal of the American Chemical Society, 2012, 134, 6296-6308.	6.6	70
26	Alkyne Versus Ynamide Reactivity: Regioselective Radical Cyclization of Yneâ€Ynamides. Angewandte Chemie - International Edition, 2019, 58, 2289-2294.	7.2	69
27	Calcium(II)-Catalyzed Aza-Piancatelli Reaction. Organic Letters, 2014, 16, 6464-6467.	2.4	68
28	Umpolung Reactivity of Ynamides: An Unconventional [1,3]â€Sulfonyl and [1,5]â€Sulfinyl Migration Cascade. Angewandte Chemie - International Edition, 2019, 58, 2365-2370.	7.2	67
29	Gold(i)-catalysed cycloisomerisation of 1,6-enynes into functionalised allenes. Chemical Communications, 2010, 46, 865.	2.2	66
30	Highly Enantioselective Rhodium-Catalyzed [2+2+2] Cycloaddition of Diynes to Sulfonimines. Journal of the American Chemical Society, 2013, 135, 4576-4579.	6.6	66
31	Silverâ€Free Twoâ€Component Approach in Gold Catalysis: Activation of [LAuCl] Complexes with Derivatives of Copper, Zinc, Indium, Bismuth, and Other Lewis Acids. Chemistry - A European Journal, 2014, 20, 5439-5446.	1.7	65
32	Calcium(II)â€Catalyzed Intermolecular Hydroarylation of Deactivated Styrenes in Hexafluoroisopropanol. Angewandte Chemie - International Edition, 2018, 57, 14245-14249.	7.2	64
33	Lewis Acid/Hexafluoroisopropanol: A Promoter System for Selective <i>ortho</i> -C-Alkylation of Anilines with Deactivated Styrene Derivatives and Unactivated Alkenes. ACS Catalysis, 2020, 10, 10794-10802.	5.5	63
34	Cycloadditions, Cycloisomerizations and Related Reactions of Alkynes Bearing Group 13 or 14 Heteroelements. Current Organic Chemistry, 2005, 9, 1699-1712.	0.9	61
35	Cobalt(I)-Mediated Preparation of Polyborylated Cyclohexadienes: Scope, Limitations, and Mechanistic Insight. Chemistry - A European Journal, 2007, 13, 5408-5425.	1.7	61
36	Synthesis of Spiroindolenines via Regioselective Gold(I) atalyzed Cyclizations of <i>N</i> â€Propargyl Tryptamines. Advanced Synthesis and Catalysis, 2017, 359, 4036-4042.	2.1	61

#	Article	IF	CITATIONS
37	Relationship between Gallium Pyramidalization in LÂ-GaCl ₃ Complexes and the Electronic Ligand Properties. Inorganic Chemistry, 2013, 52, 11493-11502.	1.9	59
38	Harnessing the Lewis Acidity of HFIP through its Cooperation with a Calcium(II) Salt: Application to the Azaâ€Piancatelli Reaction. Chemistry - A European Journal, 2016, 22, 16165-16171.	1.7	59
39	Synthesis of 4:5-Benzo-1-cobalta-2-silacyclopentenes and their Reactions with Alkynes and Alkenes:Â An Expedient Route to Silicon-Containing Polycyclic Frameworks. Organometallics, 2007, 26, 819-830.	1.1	55
40	Using Nazarov Electrocyclization to Stage Chemoselective [1,2]â€Migrations: Stereoselective Synthesis of Functionalized Cyclopentenones. Angewandte Chemie - International Edition, 2011, 50, 10981-10985.	7.2	55
41	Galliumâ€Assisted Transfer Hydrogenation of Alkenes. Chemistry - A European Journal, 2014, 20, 14488-14492.	1.7	55
42	Chemo-, Regio-, and Stereoselective Cobalt-Mediated [2+2+2] Cycloaddition of Alkynyl Boronates to Alkenes: 1,3- and 1,4-Diboryl-1,3-cyclohexadienes. Angewandte Chemie - International Edition, 2005, 44, 7114-7118.	7.2	54
43	Rhodiumâ€Catalyzed Alkene Difunctionalization with Nitrenes. Chemistry - A European Journal, 2016, 22, 9338-9347.	1.7	54
44	Gold-Catalyzed <i>syn</i> -1,2-Difunctionalization of Ynamides via Nitrile Activation. Organic Letters, 2018, 20, 8077-8081.	2.4	52
45	Silver-Catalyzed Cycloisomerization of 1,n-Allenynamides. Organic Letters, 2011, 13, 2952-2955.	2.4	51
46	Cobalt-Mediated [2+2+2] Cycloaddition versus CH and NH Activation of Pyridones and Pyrazinones with Alkynes: An Experimental Study. Chemistry - A European Journal, 2007, 13, 7443-7465.	1.7	50
47	Assessing Ligand and Counterion Effects in the Noble Metal Catalyzed Cycloisomerization Reactions of 1,6-Allenynes: a Combined Experimental and Theoretical Approach. ACS Catalysis, 2016, 6, 5146-5160.	5. 5	50
48	Iron atalyzed Reductive Ethylation of Imines with Ethanol. Angewandte Chemie - International Edition, 2018, 57, 3228-3232.	7.2	50
49	Synthesis of Cyclopenta[<i>b</i>]piperazinones via an Azaoxyallyl Cation. Organic Letters, 2018, 20, 7405-7409.	2.4	50
50	A Straightforward Procedure for the [2+2+2] Cycloaddition of Enediynes. Advanced Synthesis and Catalysis, 2009, 351, 271-275.	2.1	49
51	Transitionâ€Metalâ€Free Tunable Chemoselective Nâ€Functionalization of Indoles with Ynamides. Angewandte Chemie - International Edition, 2014, 53, 8333-8337.	7.2	49
52	Enantioselective Gold-Catalyzed Pictet–Spengler Reaction. Organic Letters, 2019, 21, 9446-9451.	2.4	49
53	Alkynylboronates and â€boramides in Co ^I ―and Rh ^I atalyzed [2+2+2] Cycloadditions: Construction of Oligoaryls through Selective Suzuki Couplings. European Journal of Organic Chemistry, 2011, 2011, 3283-3292.	1.2	48
54	Synthesis of Medium-Sized Carbocycles by Gallium-Catalyzed Tandem Carbonyl–Olefin Metathesis/Transfer Hydrogenation. Organic Letters, 2019, 21, 8132-8137.	2.4	47

#	Article	IF	CITATIONS
55	Structure, Stability, and Catalytic Activity of Fluorine-Bridged Complexes IPr·GaCl ₂ (μ-F)EF _{<i>n</i>–1} (EF _{<i>n</i>} [–] =) Tj ETQq1 Organometallics, 2014, 33, 594-599.	1,0,78431	4 _{rg} BT /Ove
56	Double-Stereodifferentiation in Rhodium-Catalyzed $[2+2+2]$ Cycloaddition: Chiral Ligand/Chiral Counterion Matched Pair. Organic Letters, 2015, 17, 3754-3757.	2.4	45
57	Synthesis of Bridged Tetrahydrobenzo[<i>b</i>]azepines and Derivatives through an Azaâ€Piancatelli Cyclization/Michael Addition Sequence. Angewandte Chemie - International Edition, 2020, 59, 1134-1138.	7.2	45
58	Complex Polycyclic Molecules from Acyclic Precursors via Transition Metal-Catalyzed Cascade Reactions., 0,, 259-294.		43
59	Palladium(II)-Catalyzed Diastereoselective 2,3-Trans C(sp ³)–H Arylation of Glycosides. ACS Catalysis, 2018, 8, 7781-7786.	5.5	43
60	Keteniminiumâ€Driven Umpolung Difunctionalization of Ynamides. Angewandte Chemie - International Edition, 2020, 59, 10785-10790.	7.2	43
61	Diastereoselective Pd-Catalyzed Anomeric C(sp ³)–H Activation: Synthesis of α-(Hetero)aryl C-Glycosides. ACS Catalysis, 2021, 11, 1818-1826.	5. 5	43
62	Cobalt-Catalyzed C(sp ²)–CN Bond Activation: Cross-Electrophile Coupling for Biaryl Formation and Mechanistic Insight. ACS Catalysis, 2020, 10, 12819-12827.	5.5	42
63	Molecular versus Ionic Structures in Adducts of GaX ₃ with Monodentate Carbon-Based Ligands. Inorganic Chemistry, 2013, 52, 506-514.	1.9	39
64	Calcium atalyzed Synthesis of Polysubstituted 2â€Alkenylfurans from βâ€Keto Esters Tethered to Propargyl Alcohols. Chemistry - A European Journal, 2016, 22, 16974-16978.	1.7	39
65	Catalytic Use of Lowâ€Valent Cationic Gallium(I) Complexes as Ï€â€Acids. Advanced Synthesis and Catalysis, 2018, 360, 544-549.	2.1	39
66	Carbon–Carbon and Carbon–Heteroatom Bond-Forming Transformations Catalyzed by Calcium(II) Triflimide. Synthesis, 2017, 49, 1500-1508.	1.2	38
67	Counteranionâ€Directed Catalysis in the Tsuji–Trost Reaction: Stereocontrolled Access to 2,5â€Disubstituted 3â€Hydroxyâ€Tetrahydrofurans. Angewandte Chemie - International Edition, 2012, 51, 10510-10514.	7.2	37
68	Ca ^{II} â€Catalyzed Alkenylation of Alcohols with Vinylboronic Acids. Chemistry - A European Journal, 2015, 21, 11001-11005.	1.7	37
69	Inverse Electron-Demand $[4+2]$ -Cycloadditions of Ynamides: Access to Novel Pyridine Scaffolds. Organic Letters, 2016, 18, 1610-1613.	2.4	37
70	Cobalt-Mediated [2+2+2] Cycloaddition versus Cï£;H and Nï£;H Activation of 2-Pyridones and Pyrazinones with Alkynes: A Theoretical Study. Chemistry - A European Journal, 2007, 13, 7466-7478.	1.7	36
71	Atroposelective [2+2+2] cycloadditions catalyzed by a rhodium(i)–chiral phosphate system. Chemical Communications, 2013, 49, 7833.	2.2	36
72	Synthesis of Cyclooctatetraenes through a Palladiumâ€Catalyzed Cascade Reaction. Angewandte Chemie - International Edition, 2016, 55, 7208-7211.	7.2	36

#	Article	IF	CITATIONS
73	Intramolecular Pd-Catalyzed Anomeric C(sp ³)â€"H Activation of Glycosyl Carboxamides. Organic Letters, 2017, 19, 5038-5041.	2.4	36
74	Bimetallic gold(<scp>i</scp>) complexes of photoswitchable phosphines: synthesis and uses in cooperative catalysis. Catalysis Science and Technology, 2018, 8, 710-715.	2.1	36
75	Enantioselective gold(<scp>i</scp>)-catalyzed rearrangement of cyclopropyl-substituted 1,6-enynes into 2-oxocyclobutyl-cyclopentanes. Chemical Communications, 2017, 53, 7026-7029.	2.2	35
76	Calcium(II)- and Triflimide-Catalyzed Intramolecular Hydroacyloxylation of Unactivated Alkenes in Hexafluoroisopropanol. Organic Letters, 2019, 21, 7405-7409.	2.4	35
77	Well-defined organo-gallium complexes as Lewis acids for molecular catalysis: Structure–stability–activity relationships. Coordination Chemistry Reviews, 2014, 279, 43-57.	9.5	34
78	Chiral Calcium–BINOL Phosphate Catalyzed Diastereo†and Enantioselective Synthesis of <i>syn</i> å€1,2â€Disubstituted 1,2â€Diamines: Scope and Mechanistic Studies. Chemistry - A European Journal, 2015, 21, 1704-1712.	1.7	34
79	Hexafluoroisopropanolâ€Promoted Haloamidation and Halolactonization of Unactivated Alkenes. Angewandte Chemie - International Edition, 2021, 60, 946-953.	7.2	34
80	The Role of Water in Platinum atalyzed Cycloisomerization of 1,6â€Enynes: A Combined Experimental and Theoretical Gas Phase Study. ChemCatChem, 2009, 1, 138-143.	1.8	33
81	Dibromoindium(<scp>iii</scp>) cations as a π-Lewis acid: characterization of [IPr·InBr ₂][SbF ₆] and its catalytic activity towards alkynes and alkenes. Chemical Communications, 2015, 51, 7401-7404.	2.2	33
82	An Improved Protocol for the Synthesis of [(Î- ⁴ -C ₄)Co(Î- ⁵ -C ₅ H ₅)] Complexes. Organometallics, 2012, 31, 126-132.	1.1	32
83	Activation of Allenes by Gold Complexes: A Theoretical Standpoint. Topics in Current Chemistry, 2011, 302, 157-182.	4.0	31
84	Gallium(III)- and calcium(II)-catalyzed Meyer–Schuster rearrangements followed by intramolecular aldol condensation or endo-Michael addition. Chemical Communications, 2015, 51, 5318-5321.	2.2	31
85	Double annulation of ortho- and peri-C–H bonds of fused (hetero)arenes to unusual oxepino-pyridines. Chemical Science, 2020, 11, 10770-10777.	3.7	31
86	The Existence of Two Shortâ€Bond Isomers for Bicyclo[1.1.0]butane Derivatives Based on Boron and Phosphorus. Angewandte Chemie - International Edition, 2008, 47, 155-159.	7.2	30
87	A diversity-oriented synthesis of cyclopenta[<i>b</i>]pyrroles and related compounds through a calcium(<scp>ii</scp>)/copper(<scp>ii</scp>) catalytic sequence. Organic Chemistry Frontiers, 2018, 5, 640-647.	2.3	30
88	Siliconâ^'Hydrogen Bond Activation and Hydrosilylation of Alkenes Mediated by CpCo Complexes: A Theoretical Study. Journal of the American Chemical Society, 2009, 131, 3007-3015.	6.6	29
89	Cobaltâ€Mediated Linear 2:1 Coâ€oligomerization of Alkynes with Enol Ethers to Give 1â€Alkoxyâ€1,3,5â€Trienes Missing Mode of Reactivity. Chemistry - A European Journal, 2010, 16, 8904-8913.	s: A 1.7	29
90	Evaluation of the Electronic Properties of a Carbodiphosphorane through Gold Catalysis. Advanced Synthesis and Catalysis, 2011, 353, 1865-1870.	2.1	29

#	Article	lF	Citations
91	Cationic gold(i)-catalyzed enantioselective hydroalkylation of unactivated alkenes: influence of the chloride scavenger on the stereoselectivity. Organic Chemistry Frontiers, 2014, 1, 608.	2.3	29
92	First Evidence for the Existence of Hexafluoroantimonic(V) Acid. Chemistry - A European Journal, 2015, 21, 6066-6069.	1.7	29
93	Oneâ€Pot Assembly of Highly Functionalized Cyclopenta[<i>b</i>) pyrroles <i>via</i> a Calcium(II)―and Copper(II) atalyzed Reaction Sequence. Advanced Synthesis and Catalysis, 2017, 359, 1157-1163.	2.1	28
94	New elements in the gold(I)-catalyzed cycloisomerization of enynyl ester derivatives embedding a cyclohexane template. Journal of Organometallic Chemistry, 2011, 696, 388-399.	0.8	27
95	Catalytic applications of [IPr·GaX ₂][SbF ₆] and related species. Organic Chemistry Frontiers, 2016, 3, 1603-1613.	2.3	27
96	Asymmetric Fe \langle sup \rangle II \langle sup \rangle -Catalyzed Thia-Michael Addition Reaction to \hat{l}_{\pm},\hat{l}^2 -Unsaturated Oxazolidin-2-one Derivatives. Organic Letters, 2017, 19, 6324-6327.	2.4	27
97	Zirconium-Catalyzed Ethylmagnesiation of Imines â^ Scope and Mechanism. European Journal of Organic Chemistry, 2001, 2001, 3677.	1.2	26
98	Activated Phenacenes from Phenylenes by Nickelâ€Catalyzed Alkyne Cycloadditions. Angewandte Chemie - International Edition, 2011, 50, 9413-9417.	7.2	26
99	Non-Innocent Behavior of Substrate Backbone Esters in Metal-Catalyzed Carbocyclizations and Friedel–Crafts Reactions of Enynes and Arenynes. Journal of Organic Chemistry, 2015, 80, 10925-10938.	1.7	26
100	Enantioselective Total Synthesis of Cymoside through a Bioinspired Oxidative Cyclization of a Strictosidine Derivative. Angewandte Chemie - International Edition, 2020, 59, 1527-1531.	7.2	26
101	Cascade Cyclizations of Acyclic and Macrocyclic Alkynones: Studies toward the Synthesis of Phomactin A. Journal of Organic Chemistry, 2013, 78, 9541-9552.	1.7	25
102	Siteâ€Selective Calciumâ€Catalyzed/Organocatalyzed Condensation of Propargyl Alcohols Tethered to βâ€Keto Esters. European Journal of Organic Chemistry, 2016, 2016, 2688-2694.	1.2	24
103	Enantioselective and Diastereodivergent Synthesis of Spiroindolenines via Chiral Phosphoric Acid-Catalyzed Cycloaddition. Journal of the American Chemical Society, 2021, 143, 11611-11619.	6.6	24
104	Revealing the Activity of Ï€â€Acid Catalysts using a 7â€Alkynyl Cycloheptatriene. Chemistry - A European Journal, 2017, 23, 13901-13905.	1.7	23
105	An unconventional sulfur-to-selenium-to-carbon radical transfer: chemo-and regioselective cyclization of yne-ynamides. Green Chemistry, 2020, 22, 1113-1118.	4. 6	23
106	Harnessing sulfur and nitrogen in the cobalt(<scp>iii</scp>)-catalyzed unsymmetrical double annulation of thioamides: probing the origin of chemo- and regio-selectivity. Chemical Science, 2021, 12, 6393-6405.	3.7	23
107	Kinetic resolution of sulfur-stereogenic sulfoximines by Pd(<scp>ii</scp>)–MPAA catalyzed C–H arylation and olefination. Chemical Science, 2021, 12, 14863-14870.	3.7	22
108	A one-pot access to cyclopropanes from allylic ethers via hydrozirconation–deoxygenative ring formation. Chemical Communications, 2002, , 1308-1309.	2.2	21

#	Article	IF	Citations
109	New Procedures for Catalytic Carbophilic Activation by Gold and Gallium π-Acids. Synlett, 2015, 26, 1427-1436.	1.0	21
110	lodine-Catalyzed Iso-Nazarov Cyclization of Conjugated Dienals for the Synthesis of 2-Cyclopentenones. Organic Letters, 2018, 20, 7298-7303.	2.4	21
111	Calcium(II) atalyzed Intermolecular Hydroarylation of Deactivated Styrenes in Hexafluoroisopropanol. Angewandte Chemie, 2018, 130, 14441-14445.	1.6	21
112	Modular Synthesis of 9,10-Dihydroacridines through an <i>ortho</i> -C Alkenylation/Hydroarylation Sequence between Anilines and Aryl Alkynes in Hexafluoroisopropanol. Organic Letters, 2021, 23, 2565-2570.	2.4	21
113	A Straightforward Synthesis of Cyclopropanes from Aldehydes and Ketones. European Journal of Organic Chemistry, 2000, 2000, 3713-3719.	1.2	20
114	Carbeneâ€Mediated Functionalization of the Anomeric CH Bond of Carbohydrates: Scope and Limitations. Chemistry - A European Journal, 2013, 19, 6052-6066.	1.7	20
115	Efficient Nazarov Cyclization/Wagner–Meerwein Rearrangement Terminated by a Cu ^{II} â€Promoted Oxidation: Synthesis of 4â€Alkylidene Cyclopentenones. Chemistry - A European Journal, 2013, 19, 4842-4848.	1.7	20
116	Intramolecular Inverse Electron-Demand [4 + 2] Cycloadditions of Ynamides with Pyrimidines: Scope and Density Functional Theory Insights. Journal of Organic Chemistry, 2017, 82, 1726-1742.	1.7	20
117	Asymmetric Cu ^I -Catalyzed Insertion Reaction of 1-Aryl-2,2,2-trifluoro-1-diazoethanes into Si–H Bonds. Organic Letters, 2019, 21, 9094-9098.	2.4	20
118	Ring Expansion and 1,2â€Migration Cascade of Benzisoxazoles with Ynamides: Experimental and Theoretical Studies. Chemistry - an Asian Journal, 2019, 14, 4828-4836.	1.7	20
119	Solvent/Base Effects in the Selective Domino Synthesis of Phenanthridinones That Involves Highâ€Valent Palladium Species: Experimental and Theoretical Studies. Chemistry - A European Journal, 2011, 17, 12809-12819.	1.7	19
120	Cationic-palladium catalyzed regio- and stereoselective syn-1,2-dicarbofunctionalization of unsymmetrical internal alkynes. Nature Communications, 2022, 13, 1360.	5.8	19
121	Cobalt-mediated regio- and stereoselective assembly of dienamides by hydroaminative alkyne coupling of \hat{l}_{\pm} , \hat{l}_{∞} -diynes. Chemical Communications, 2008, , 1599.	2.2	18
122	Co(I)- versus Ru(II)-Catalyzed [2+2+2] cycloadditions involving alkynyl halides. Journal of Organometallic Chemistry, 2011, 696, 3906-3908.	0.8	18
123	Cycloisomerization of Conjugated Trienones and Isomeric 2 <i>H</i> -Pyrans: Unified Strategy toward Cyclopenta[<i>b</i>]furans. Journal of Organic Chemistry, 2015, 80, 6515-6519.	1.7	18
124	Calcium(II) atalyzed Alkenylation of <i>N</i> â€Acyliminiums and Related Ions with Vinylboronic Acids. Advanced Synthesis and Catalysis, 2017, 359, 2671-2675.	2.1	18
125	Synthesis of 2-substituted indoles through cyclization and demethylation of 2-alkynyldimethylanilines by ethanol. Green Chemistry, 2019, 21, 4204-4210.	4.6	18
126	Exploring the Limits of Ï€â€Acid Catalysis Using Strongly Electrophilic Main Group Metal Complexes: The Case of Zinc and Aluminium. Chemistry - A European Journal, 2020, 26, 12831-12838.	1.7	18

#	Article	IF	Citations
127	Gold Compounds Anchored to a Metalated Arene Scaffold: Synthesis, X-ray Molecular Structures, and Cycloisomerization of Enyne. Organometallics, 2013, 32, 1665-1673.	1.1	17
128	Use of Planar Chiral FerrocenylÂphosphineâ€Gold(I) Complexes in the Asymmetric Cycloisomerization of 3â€Hydroxylated 1,5â€Enynes. European Journal of Organic Chemistry, 2016, 2016, 70-75.	1.2	17
129	Spatially encoded diffusion-ordered NMR spectroscopy of reaction mixtures in organic solvents. Analyst, The, 2018, 143, 3458-3464.	1.7	17
130	Reactions Involving Tryptamines and δâ€Allenyl Aldehydes: Competition between Pictet‧pengler Reaction and Cyclization to 1â€Aminotetralins. Advanced Synthesis and Catalysis, 2018, 360, 1280-1288.	2.1	16
131	Stereoselective Access to (E)-1,3-Enynes through Pd/Cu-Catalyzed Alkyne Hydrocarbation of Allenes. Organic Letters, 2019, 21, 3136-3141.	2.4	16
132	Triflic Acid as an Efficient Brønsted Acid Promoter for the Umpolung of Nâ€Ac Indoles in Hydroarylation Reactions. Advanced Synthesis and Catalysis, 2018, 360, 161-172.	2.1	15
133	Activating Pyrimidines by Pre-distortion for the General Synthesis of 7-Aza-indazoles from 2-Hydrazonylpyrimidines via Intramolecular Diels–Alder Reactions. Journal of the American Chemical Society, 2019, 141, 15901-15909.	6.6	15
134	Enantioselective Synthesis of Complex Fused Heterocycles through Chiral Phosphoric Acid Catalyzed Intramolecular Inverseâ€Electronâ€Demand Azaâ€Diels–Alder Reactions. Chemistry - A European Journal, 2020, 26, 1406-1413.	1.7	15
135	Palladium atalyzed Silylcyanation of Ynamides: Regio―and Stereoselective Access to Tetrasubstituted 3â€Silylâ€2â€Aminoacrylonitriles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
136	Oxidation of αâ€Alkoxy Allenes into α′â€Alkoxy Enones. Chemistry - A European Journal, 2010, 16, 9973-997	6.1.7	14
137	Ligand Effect in Platinum-Catalyzed Cycloisomerization of 1,6-Enynes: Water or Carbon Monoxide, a Similar Role despite Distinct Electronic Properties?. Organometallics, 2013, 32, 374-376.	1.1	14
138	Revealing the electrophilicity of N-Ac indoles with FeCl ₃ : a mechanistic study. Chemical Communications, 2017, 53, 5834-5837.	2.2	14
139	Goldâ€Catalyzed Regioselective Tetradehydroâ€Dielsâ€Alder Reaction of Yneâ€Ynamides: Access to 2,3â€Dihydrobenzo[<i>f</i> jindoles. Asian Journal of Organic Chemistry, 2019, 8, 1128-1132.	1.3	14
140	Keteniminiumâ€Driven Umpolung Difunctionalization of Ynamides. Angewandte Chemie, 2020, 132, 10877-10882.	1.6	14
141	New Transformations from a 3-Silyloxy 2-Aza-1,3-diene: Consecutive Zr-Mediated Retro-Brook Rearrangement and Reactions with Electrophiles. Tetrahedron, 2000, 56, 4467-4472.	1.0	13
142	Gold(I)-Catalyzed Synthesis of Furopyrans: Insight into Hetero-Diels–Alder Reactions. Organic Letters, 2019, 21, 6084-6088.	2.4	13
143	Umpolung Reactivity of Ynamides: An Unconventional [1,3]â€Sulfonyl and [1,5]â€Sulfinyl Migration Cascade. Angewandte Chemie, 2019, 131, 2387-2392.	1.6	13
144	Superelectrophilic Gallium(III) Homodimers in Gallium Chloride-Mediated Methylation of Benzene: A Theoretical Study. ACS Catalysis, 2020, 10, 3027-3033.	5 . 5	13

#	Article	IF	CITATIONS
145	Conversion of Imines into C,N-Dimagnesiated Compounds and Trapping with Electrophiles. One-Pot Access to 1-Azaspirocyclic Framework. Synthesis, 2002, 2002, 1115-1120.	1.2	12
146	Metalated-Arene-Phosphino Ligands: A Novel Approach to Open-Sided Gold Compounds. Organometallics, 2010, 29, 6636-6638.	1.1	12
147	Electronic Effects in Carbeneâ€Mediated CH Bond Functionalization: An Experimental and Theoretical Study. Advanced Synthesis and Catalysis, 2014, 356, 2493-2505.	2.1	12
148	Gold(I)â€Catalyzed Carboaminations of Allenes by <i>N</i> â€Allyltetrahydroâ€Î²â€€arbolines: An Experimental and Theoretical Study. Advanced Synthesis and Catalysis, 2016, 358, 3960-3965.	2.1	12
149	Azaâ€Piancatelli Cyclization as a Platform for the Preparation of Scaffolds of Natural Compounds: Application to the Total Synthesis of Bruceolline D. European Journal of Organic Chemistry, 2020, 2020, 5323-5328.	1.2	12
150	On the Superior Activity of In(I) versus In(III) Cations Toward <i>ortho-C-</i> Alkylation of Anilines and Intramolecular Hydroamination of Alkenes. Journal of Organic Chemistry, 2020, 85, 12947-12959.	1.7	12
151	Enantioselective gold(<scp>i</scp>)-catalyzed cyclization/intermolecular nucleophilic additions of 1,5-enyne derivatives. Chemical Communications, 2020, 56, 9457-9460.	2.2	12
152	Hexafluoroisopropanolâ€Promoted Haloamidation and Halolactonization of Unactivated Alkenes. Angewandte Chemie, 2021, 133, 959-966.	1.6	12
153	Yb(<scp>iii</scp>)-catalysed <i>syn</i> -thioallylation of ynamides. Chemical Communications, 2021, 57, 7521-7524.	2.2	12
154	A direct conversion of \hat{l}_{\pm},\hat{l}^2 -unsaturated ketones to vinylcyclopropanes: new zirconium-mediated reaction. Chemical Communications, 2000, , 171-172.	2.2	11
155	Synthesis and photovoltaic performances in solution-processed BHJs of oligothiophene-substituted organocobalt complexes [(Î-4-C4(nT)4)Co(Î-5-C5H5)]. Chemical Communications, 2014, 50, 8663-8666.	2.2	11
156	Intermolecular Rhodium(II)â€Catalyzed Allylic C(<i>>sp</i> >sup>3)–H Amination of Cyclic Enamides. Advanced Synthesis and Catalysis, 2018, 360, 513-518.	2.1	11
157	Toward a Greener Barluenga–Valdés Cross-Coupling: Microwave-Promoted C–C Bond Formation with a Pd/PEG/H ₂ O Recyclable Catalytic System. Organic Letters, 2019, 21, 8708-8712.	2.4	11
158	Alkyne Versus Ynamide Reactivity: Regioselective Radical Cyclization of Yne‥namides. Angewandte Chemie, 2019, 131, 2311-2316.	1.6	11
159	Palladium-Catalyzed Regioselective Arylalkenylation of Ynamides. Organic Letters, 2022, 24, 1524-1529.	2.4	11
160	Chiral Phosphate in Rhodiumâ€Catalyzed Asymmetric [2+2+2] Cycloaddition: Ligand, Counterion, or Both?. Chemistry - A European Journal, 2016, 22, 8553-8558.	1.7	10
161	Catalytic Activity of Gold(I) Complexes with Hemilabile P,Nâ€Ligands. ChemPlusChem, 2017, 82, 442-448.	1.3	10
162	Iron atalyzed Reductive Ethylation of Imines with Ethanol. Angewandte Chemie, 2018, 130, 3282-3286.	1.6	10

#	Article	IF	Citations
163	Solvent Effect in Gold(I)-Catalyzed Domino Reaction: Access to Furopyrans. Organic Letters, 2020, 22, 7333-7337.	2.4	10
164	Bimolecular vinylation of arenes by vinyl cations. Chemical Communications, 2020, 56, 6507-6510.	2.2	10
165	Tridentate NNN Ligand Associating Amidoquinoline and Iminophosphorane: Synthesis and Coordination to Pd and Ni Centers. Organometallics, 2020, 39, 719-728.	1.1	10
166	Regio- and diastereoselective Pd-catalyzed synthesis of C2-aryl glycosides. Chemical Communications, 2020, 56, 7175-7178.	2.2	10
167	Polyarylquinone Synthesis by Relayed Dehydrogenative [2 + 2 + 2] Cycloaddition. ACS Catalysis, 2022, 12, 6227-6237.	5.5	10
168	Zirconium-mediated conversion of homoallylic ethers into cyclopropane derivatives. Tetrahedron Letters, 2003, 44, 4827-4829.	0.7	9
169	An Unusual Anion-Ï€ Interaction in an ;rido Organometallic Assembly: Synthesis, First Crystal Structure, and Computational Study. European Journal of Inorganic Chemistry, 2009, 2009, 3703-3707.	1.0	9
170	Dissecting the Gold(I)-Catalyzed Carboaminations of $\langle i \rangle N \langle i \rangle$ -Allyl Tetrahydro-β-carbolines to Allenes. Journal of Organic Chemistry, 2018, 83, 898-912.	1.7	9
171	Photooxygenation of 2-propargylfurans: a path to structurally diverse nitrogen-containing 5-membered rings. Chemical Communications, 2019, 55, 5443-5446.	2.2	9
172	Concerted vs Nonconcerted Metalation–Deprotonation in Orthogonal Direct C–H Arylation of Heterocycles with Halides: A Computational Study. Journal of Organic Chemistry, 2021, 86, 1769-1778.	1.7	9
173	Substitution of the Participating Group of Glycosyl Donors by a Halogen Atom: Influence on the Rearrangement of Transient Orthoesters Formed during Glycosylation Reactions. Journal of Organic Chemistry, 2017, 82, 3291-3297.	1.7	8
174	Synthesis of Bridged Tetrahydrobenzo[b]azepines and Derivatives through an Azaâ€Piancatelli Cyclization/Michael Addition Sequence. Angewandte Chemie, 2020, 132, 1150-1154.	1.6	8
175	Alkylidene Meldrum's Acids as Platforms for the Vinylogous Synthesis of Dihydropyranones. Angewandte Chemie - International Edition, 2021, 60, 11110-11114.	7.2	8
176	Expedient Access to Polyaromatic Biaryls by Unconventional Ag-Catalyzed Cycloaromatization of Alkynylthiophenes and Au-Catalyzed Double C–H Activation. Organic Letters, 0, , .	2.4	8
177	Thermal Intramolecular Alder-Ene Cycloisomerization of 1,6-Allenynes. Synlett, 2008, 2008, 751-754.	1.0	7
178	Synthesis and Characterizations of Keplerate Nanocapsules Incorporating L- and D-Tartrate Ligands. Journal of Cluster Science, 2017, 28, 799-812.	1.7	7
179	Empirical Estimation of the Molecular Weight of Gold Complexes in Solution by Pulsed-Field Gradient NMR. Organometallics, 2018, 37, 4692-4698.	1.1	7
180	Sulfoxideâ€Controlled Stereoselective Azaâ€Piancatelli Reaction. Advanced Synthesis and Catalysis, 2021, 363, 4277-4282.	2.1	7

#	Article	IF	Citations
181	Cyclization of Enynes. , 2009, , 1.		7
182	Reaction of 3-trimethylsilyloxy-2-aza-1,3-dienes with zirconocene: a transition metal promoted retro-Brook rearrangement. Tetrahedron Letters, 2000, 41, 3053-3056.	0.7	6
183	Hypervalent″odineâ€Mediated Synthesis of 1,2â€Dispirodienones: Experimental and Theoretical Investigations. European Journal of Organic Chemistry, 2015, 2015, 7494-7503.	1.2	6
184	A Terminal, Fluxional η ⁴ â€Benzene Complex with a Thermally Accessible Triplet State is the Primary Photoproduct in the Intercyclobutadiene Haptotropism of (CpCo)phenylenes. Chemistry - A European Journal, 2015, 21, 4546-4550.	1.7	6
185	Gallium-Catalyzed Scriabine Reaction. Organic Letters, 2018, 20, 6957-6960.	2.4	6
186	Zirconium-Catalyzed Hydroalumination of Câ•O Bonds: Site-Selective De-O-acetylation of Peracetylated Compounds and Mechanistic Insights. Journal of Organic Chemistry, 2021, 86, 9280-9288.	1.7	6
187	Heterobimetallic Rare Earth–Lithium Complexes with Fewer Than Three Binaphtholates. European Journal of Inorganic Chemistry, 2013, 2013, 2807-2811.	1.0	5
188	Synthesis of 3-Substituted 3-Bromo-1-phenylallenes from Alkynylcycloheptatrienes. Journal of Organic Chemistry, 2018, 83, 11309-11317.	1.7	5
189	Selectivity in the Intermolecular Diels–Alder Reaction of Conjugated Trienes: Experimental and Theoretical Approaches. European Journal of Organic Chemistry, 2018, 2018, 5869-5877.	1.2	5
190	Formal [8+3]-Annulation between Azaoxyallyl Cations and Tropones. Synthesis, 2020, 52, 553-564.	1.2	5
191	Sequential One-Pot Synthesis of 3-Arylbenzofurans from <i>N</i> -Tosylhydrazones and Bromophenol Derivatives. Journal of Organic Chemistry, 2020, 85, 13664-13673.	1.7	5
192	Exploring the Versatility of 7â€Alkynylcycloheptatriene Scaffolds Under Ï€â€Acid Catalysis. European Journal of Organic Chemistry, 2020, 2020, 5350-5357.	1.2	5
193	Alkynophilicity of Group 13 MX ₃ Salts: A Theoretical Study. Inorganic Chemistry, 2021, 60, 5507-5522.	1.9	5
194	Synthesis of chiral polycyclic <i>N</i> -heterocycles <i>via</i> gold(<scp>i</scp>)-catalyzed 1,6-enyne cyclization/intramolecular nucleophilic addition. Chemical Communications, 2022, 58, 3043-3046.	2.2	5
195	Stable Singlet Diradicals Based on Boron and Phosphorus. ACS Symposium Series, 2005, , 81-93.	0.5	4
196	Cyclopentadienyl Ligands as Perfect Anion Receptors: Teamwork between Ï€-Anion Interaction and Câ^'HÂ-Â-Â-Anion Hydrogen Bonds. Crystal Growth and Design, 2009, 9, 5304-5310.	1.4	4
197	Diastereoselective synthesis of 2,5-disubstituted-3-hydroxy-tetrahydrofurans through a counterion-directed Tsuji–Trost reaction. Organic Chemistry Frontiers, 2016, 3, 1462-1466.	2.3	4
198	Acid-catalysed intramolecular addition of \hat{l}^2 -ketoesters to 1,3-dienes. Organic and Biomolecular Chemistry, 2017, 15, 584-588.	1.5	4

#	Article	IF	CITATIONS
199	Leveraging the Domino Skeletal Expansion of Thia-/Selenazolidinones via Nitrogen-Atom Transfer in Hexafluoroisopropanol: Room Temperature Access to Six-Membered S/Se,N-Heterocycles. Journal of Organic Chemistry, 2022, 87, 613-627.	1.7	4
200	Potassium Carbonate to Unlock a GaCl ₃ -Catalyzed Câ€"H Propargylation of Arenes. ACS Catalysis, 2022, 12, 305-315.	5.5	4
201	Unbiased C3â€Electrophilic Indoles: Triflic Acid Mediated C3â€Regioselective Hydroarylation of Nâ^'H Indoles**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	4
202	Alkaline-earth complexes with macrocyclic-functionalised bis(phenolate)s and bis(fluoroalkoxide)s. Dalton Transactions, 2020, 49, 13017-13028.	1.6	3
203	Base-Assisted Intramolecular C–N Coupling Reaction from NH ₂ -Bound Cyclopalladated <scp>I</scp> -Phenylalanine to Indoline-2-carboxylic Acid. Organometallics, 2020, 39, 767-773.	1.1	3
204	Goldâ€Catalyzed Carboamination of Allenes by Tertiary Amines Proceeding with Benzylic Group Migration. Advanced Synthesis and Catalysis, 2021, 363, 2893-2902.	2.1	3
205	Alkylidene Meldrum's Acids as Platforms for the Vinylogous Synthesis of Dihydropyranones. Angewandte Chemie, 2021, 133, 11210-11214.	1.6	3
206	DFT Analysis into the Calcium(II)-Catalyzed Coupling of Alcohols With Vinylboronic Acids: Cooperativity of Two Different Lewis Acids and Counterion Effects. Journal of Organic Chemistry, 2021, 86, 9134-9144.	1.7	3
207	Cobalt-Mediated [2+2+2] Cycloaddition of Alkynyl Boronates to Indole and Pyrrole Double Bonds. Synlett, 2008, 2008, 2056-2060.	1.0	2
208	Synthesis of Orthogonally Protected Angular Nitrogen Polyheterocycles via CpCo-Catalyzed Pyridine Formation. Synlett, 2010, 2010, 2314-2318.	1.0	2
209	Synthesis of axially chiral biaryl thioglycosides through thiosugar-directed Pd-catalyzed asymmetric C–H activation. Chemical Communications, 2021, 57, 10355-10358.	2.2	2
210	Palladium atalyzed Silylcyanation of Ynamides: Regio―and Stereoselective Access to Tetrasubstituted 3â€Silylâ€2â€Aminoacrylonitriles. Angewandte Chemie, 0, , .	1.6	2
211	Cyclopentadienylcobalt-Mediated Intermolecular Cycloaddition of $\hat{l}\pm, \hat{l}\%$ -Diynes to (Cyclo)alkenes: Synthesis of Linearly Fused Oligocycles and Extension to Enantiomerically Pure (6aR,10aR)-Dihydroanthracyclinones. Synthesis, 2010, 2010, 2179-2200.	1.2	1
212	Reaction of Phosphines with 1-Azido-(2-halogenomethyl)benzene Giving Aminophosphonium-Substituted Indazoles. Journal of Organic Chemistry, 2021, 86, 3017-3023.	1.7	1
213	CHAPTER 4. Computational Studies on the Reactivity of Transition Metal Complexes with N-Heterocyclic Carbene Ligands. RSC Catalysis Series, 2016, , 120-177.	0.1	1
214	A Cyclic Divalent N(I) Species Isoelectronic to Carbodiphosphoranes. Chemical Communications, 2022,	2.2	1
215	On the mechanism of the zirconium-catalysed addition of ethyl Grignard reagents to imines. Comptes Rendus Chimie, 2002, 5, 127-130.	0.2	0
216	Zirconium-Mediated Conversion of Homoallylic Ethers into Cyclopropane Derivatives ChemInform, 2003, 34, no.	0.1	0

#	Article	IF	CITATIONS
217	Synthesis of Fused Arylboronic Esters via Cobalt(0)-Mediated Cycloaddition of Alkynylboronates with ?,?-Diynes ChemInform, 2005, 36, no.	0.1	0
218	Cycloadditions, Cycloisomerizations and Related Reactions of Alkynes Bearing Group 13 or 14 Heteroelements. ChemInform, 2006, 37, no.	0.1	0
219	Inside Cover: The Role of Bent Acyclic Allene Gold Complexes in Axisâ€to enter Chirality Transfers (Angew. Chem. Int. Ed. 39/2008). Angewandte Chemie - International Edition, 2008, 47, 7370-7370.	7.2	0
220	Synthesis by Metal-Mediated Câ€"C Bond Forming Reactions of Alkynes, Diynes, and Enynes. , 2009, , .		0
221	Nickel-Catalyzed Synthesis of Strained Phenacenes. Synfacts, 2011, 2011, 1299-1299.	0.0	0
222	Back Cover: Cationic Gallium(III) Halide Complexes: A New Generation of π-Lewis Acids (Chem. Eur. J.) Tj ETQq0 C	0 0 rgBT /O	verlock 10 Tf
223	Functionalization of Mo132 Keplerate Nanocapsules by Cyclic Carboxylates: L-proline vs Cyclopentanecarboxylate. Current Inorganic Chemistry, 2018, 7, 39-47.	0.2	0
224	Transition structures for the oxy–ene reaction. Chemical Communications, 2022, , .	2.2	0
225	Unbiased C3â€Electrophilic Indoles: Triflic Acid Mediated C3â€Regioselective Hydroarylation of Nâ€H Indoles. Angewandte Chemie, 0, , .	1.6	O