Agnieszka Ludwiczuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7711742/publications.pdf

Version: 2024-02-01

72 papers

1,441 citations

430874 18 h-index 34 g-index

75 all docs

75 docs citations

75 times ranked 1191 citing authors

#	Article	IF	CITATIONS
1	Phytochemical and biological studies of bryophytes. Phytochemistry, 2013, 91, 52-80.	2.9	199
2	Chemical Constituents of Bryophytes: Structures and Biological Activity. Journal of Natural Products, 2018, 81, 641-660.	3.0	141
3	Introduction. Progress in the Chemistry of Organic Natural Products, 2013, 95, 1-16.	1.1	77
4	Bryophytes: Bio- and Chemical Diversity, Bioactivity and Chemosystematics. Heterocycles, 2009, 77, 99.	0.7	70
5	Terpenoid Secondary Metabolites in Bryophytes: Chemical Diversity, Biosynthesis and Biological Functions. Critical Reviews in Plant Sciences, 2018, 37, 210-231.	5.7	57
6	The In Vitro Activity of Essential Oils against Helicobacter Pylori Growth and Urease Activity. Molecules, 2020, 25, 586.	3.8	55
7	Bryophytes as a source of bioactive volatile terpenoids – A review. Food and Chemical Toxicology, 2019, 132, 110649.	3.6	52
8	Chemical Constituents of Bryophytes. Progress in the Chemistry of Organic Natural Products, 2013, , .	1.1	50
9	Novel Phenolic Constituents of Pulmonaria officinalis L. LC-MS/MS Comparison of Spring and Autumn Metabolite Profiles. Molecules, 2018, 23, 2277.	3.8	39
10	Distribution of Bibenzyls, Prenyl Bibenzyls, Bis-bibenzyls, and Terpenoids in the Liverwort Genus <i>Radula</i> . Journal of Natural Products, 2020, 83, 756-769.	3.0	33
11	Distribution of Cyclic and Acyclic Bis-bibenzyls in the Marchantiophyta (Liverworts), Ferns and Higher Plants and Their Biological Activities, Biosynthesis, and Total Synthesis. Heterocycles, 2012, 86, 891.	0.7	32
12	Chapter Five: Distribution of Terpenoids and Aromatic Compounds in Selected Southern Hemispheric Liverworts. Fieldiana Botany, 2008, 47, 37.	0.3	31
13	Antimycobacterial Activity of Cinnamaldehyde in a Mycobacterium tuberculosis(H37Ra) Model. Molecules, 2018, 23, 2381.	3.8	31
14	Identification of cryptic species within liverwort Conocephalum conicum based on the volatile components. Phytochemistry, 2013, 95, 234-241.	2.9	27
15	Spectroscopic Studies of Dual Fluorescence in 2-((4-Fluorophenyl)amino)-5-(2,4-dihydroxybenzeno)-1,3,4-thiadiazole. Journal of Physical Chemistry A, 2015, 119, 10791-10805.	2.5	26
16	Isolation of terpenoids from <i><scp>P</scp>impinella anisum</i> essential oil by highâ€performance counterâ€current chromatography. Journal of Separation Science, 2013, 36, 2611-2614.	2.5	24
17	Fingerprinting of Secondary Metabolites of Liverworts: Chemosystematic Approach. Journal of AOAC INTERNATIONAL, 2014, 97, 1234-1243.	1.5	22
18	Bis-bibenzyls, Bibenzyls, and Terpenoids in 33 Genera of the Marchantiophyta (Liverworts): Structures, Synthesis, and Bioactivity. Journal of Natural Products, 2022, 85, 729-762.	3.0	21

#	Article	IF	CITATIONS
19	Chemotaxonomic value of essential oil components in liverwort species. A review. Flavour and Fragrance Journal, 2015, 30, 189-196.	2.6	18
20	Volatile Components from Selected Mexican, Ecuadorian, Greek, German and Japanese Liverworts. Natural Product Communications, 2008, 3, 1934578X0800300.	0.5	17
21	Bryophytes: Liverworts, Mosses, and Hornworts: Extraction and Isolation Procedures. Methods in Molecular Biology, 2013, 1055, 1-20.	0.9	17
22	Acetylcholinesterase Inhibitors among Zingiber officinale Terpenesâ€"Extraction Conditions and Thin Layer Chromatography-Based Bioautography Studies. Molecules, 2020, 25, 1643.	3.8	17
23	Phytochemical Fingerprinting and In Vitro Antimicrobial and Antioxidant Activity of the Aerial Parts of Thymus marschallianus Willd. and Thymus seravschanicus Klokov Growing Widely in Southern Kazakhstan. Molecules, 2021, 26, 3193.	3.8	17
24	Composition, Anti-MRSA Activity and Toxicity of Essential Oils from Cymbopogon Species. Molecules, 2021, 26, 7542.	3.8	17
25	Studies on the Genus <i>Thysananthus</i> (Marchantiophyta, Lejeuneaceae) 3. Terpenoid Chemistry and Chemotaxonomy of Selected Species of <i>Thysananthus</i> and <i>Dendrolejeunea fruticosa</i> Cryptogamie, Bryologie, 2011, 32, 199-209.	0.2	16
26	Volatile constituents and antimicrobial activities of nine South African liverwort species. Phytochemistry Letters, 2016, 16, 61-69.	1.2	16
27	Terpenoids and Aromatic Compounds from Bryophytes and their Central Nervous System Activity. Current Organic Chemistry, 2020, 24, 113-128.	1.6	15
28	Phenolic compounds in the flowers ofLavatera trimestrisL. (Malvaceae). Journal of Planar Chromatography - Modern TLC, 2005, 18, 264-268.	1.2	14
29	Essential Oils of some Mentha Species and Cultivars, their Chemistry and Bacteriostatic Activity. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	14
30	Chemosystematics of Porella (Marchantiophyta, Porellaceae). Natural Product Communications, 2011, 6, 315-21.	0.5	14
31	Cytotoxic and Antiviral Compounds from Bryophytes and Inedible Fungi. Journal of Pre-Clinical and Clinical Research, 2014, 7, 73-85.	0.3	13
32	Volatile components from selected Tahitian liverworts. Natural Product Communications, 2009, 4, 1387-92.	0.5	13
33	Distribution of drimane sesquiterpenoids and tocopherols in liverworts, ferns and higher plants: Polygonaceae, Canellaceae and Winteraceae species. Natural Product Communications, 2012, 7, 685-92.	0.5	13
34	Separation of the ginsenosides fraction obtained from the roots of Panax quinque folium L. cultivated in Poland. Journal of Planar Chromatography - Modern TLC, 2005, 18, 104-107.	1.2	12
35	Evaluation of anti-melanoma and tyrosinase inhibitory properties of marchantin A, a natural macrocyclic bisbibenzyl isolated from Marchantia species. Phytochemistry Letters, 2019, 31, 192-195.	1.2	12
36	The Role of GPR120 Receptor in Essential Fatty Acids Metabolism in Schizophrenia. Biomedicines, 2020, 8, 243.	3.2	12

#	Article	IF	CITATIONS
37	Volatile Components from Selected Tahitian Liverworts. Natural Product Communications, 2009, 4, 1934578X0900401.	0.5	11
38	Volatile Components of the Stressed Liverwort Conocephalum Conicum. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	11
39	Ion-exchanging dialysis as an effective method for protein entrapment in curdlan hydrogel. Materials Science and Engineering C, 2019, 105, 110025.	7. 3	11
40	Antimicrobial Activity of Ultrasonic Extracts of Two Chemotypes of Thymus serpyllum L. of Central Kazakhstan and their Polyphenolic Profiles. Open Access Macedonian Journal of Medical Sciences, 2021, 9, 61-67.	0.2	11
41	Phytochemicals from bryophytes: Structures and biological activity. Journal of the Serbian Chemical Society, 2021, 86, 1139-1175.	0.8	11
42	Phytochemical Profile and Anticancer Potential of Endophytic Microorganisms from Liverwort Species, Marchantia polymorpha L Molecules, 2022, 27, 153.	3.8	11
43	The Phenolic Compounds Profile and Cosmeceutical Significance of Two Kazakh Species of Onions: Alliumgalanthum and A. turkestanicum. Molecules, 2021, 26, 5491.	3.8	10
44	Volatile Components of the Stressed Liverwort Conocephalum conicum. Natural Product Communications, 2016, 11, 103-4.	0.5	10
45	Comparative Study on Volatile Compounds of <i>Alpinia japonica</i> and <i>Elettaria cardamomum</i> . Journal of Oleo Science, 2017, 66, 871-876.	1.4	8
46	Thin-layer chromatography—fingerprint, antioxidant activity, and gas chromatography—mass spectrometry profiling of several <i>Origanum</i> L. species. Journal of Planar Chromatography - Modern TLC, 2017, 30, 386-391.	1.2	8
47	Chemosystematics of selected liverworts collected in Borneo . Bryophyte Diversity and Evolution, 2015, 31, 33.	1.1	8
48	Pungent and Bitter, Cytotoxic and Antiviral Terpenoids from Some Bryophytes and Inedible Fungi. Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	7
49	Rosa platyacantha Schrenk from Kazakhstan—Natural Source of Bioactive Compounds with Cosmetic Significance. Molecules, 2021, 26, 2578.	3.8	7
50	Chromatographic analysis of ginsenosides occurring in the roots of American ginseng (Panax) Tj ETQq0 0 0 rgBT / Chromatography - Modern TLC, 2002, 15, 147-150.	Overlock :	10 Tf 50 227 6
51	Chemosystematics of <i>Porella</i> (Marchantiophyta, Porellaceae). Natural Product Communications, 2011, 6, 1934578X1100600.	0.5	6
52	Distribution of Drimane Sesquiterpenoids and Tocopherols in Liverworts, Ferns and Higher Plants: Polygonaceae, Canellaceae and Winteraceae Species. Natural Product Communications, 2012, 7, 1934578X1200700.	0.5	5
53	Chemical variability of the Tahitian Marchantia hexaptera Reich Phytochemistry Letters, 2014, 10, xcix-ciii.	1.2	5
54	Biological activities of Salvia L species. Current Issues in Pharmacy and Medical Sciences, 2013, 26, 326-330.	0.4	5

#	Article	IF	CITATIONS
55	Chemical Relationships between Liverworts of the Family Lejeuneaceae (Porellales,) Tj ETQq1 1 0.784314 rgBT /O	verlock 10	Tf 50 742 T
56	High correlation of chemical composition with genotype in cryptic species of the liverwort Aneura pinguis. Phytochemistry, 2018, 152, 134-147.	2.9	4
57	Chemical relationships between liverworts of the family Lejeuneaceae (Porellales,) Tj ETQq1 1 0.784314 rgBT /Ove	erlock 10 T 0.5	f ₄ 50 662 Td
58	Analysis of ginsenosides fromPanax quinquefoliumL. by automated multiple development. Journal of Planar Chromatography - Modern TLC, 2006, 19, 115-117.	1.2	3
59	Chemical Constituents of Marchantiophyta. Progress in the Chemistry of Organic Natural Products, 2013, , 25-561.	1.1	3
60	Chemical comparison of the underground parts of Valeriana officinalis and Valeriana turkestanica from Poland and Kazakhstan. Open Chemistry, 2017, 15, 75-81.	1.9	3
61	Chemical Diversity of Liverworts From <i>Frullania </i> Genus. Natural Product Communications, 2021, 16, 1934578X2199538.	0.5	3
62	ATR-FTIR-based fingerprinting of some Cucurbitaceae extracts: a preliminary study. Acta Societatis Botanicorum Poloniae, 2018, 87, .	0.8	3
63	GC/MS Fingerprinting of Solvent Extracts and Essential Oils Obtained from Liverwort Species. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	2
64	Localization of ginsenosides in Panax quinquefolium root tissues. Acta Agrobotanica, 2012, 59, 7-15.	1.0	2
65	Volatile Constituents of <i>Ocimum minimum</i> Herb Cultivated in Portugal. Natural Product Communications, 2009, 4, 1934578X0900401.	0.5	1
66	Biologically Active Compounds of the Marchantiophyta and Bryophyta. Progress in the Chemistry of Organic Natural Products, 2013, , 619-638.	1.1	1
67	Antimicrobial Activity and Polyphenol Profiles of Hydroalcoholic Extracts of Thymus rasitatus Klokov and Thymus eremita Klokov. Open Access Macedonian Journal of Medical Sciences, 2021, 9, 313-317.	0.2	1
68	The content and the composition of ginsenosides in different parts of American ginseng (Panax) Tj ETQq0 0 0 rgB	3T√Qverloc	k ₁ 10 Tf 50 2
69	Chemosystematics of Marchantiophyta. Progress in the Chemistry of Organic Natural Products, 2013, , 639-704.	1.1	O
70	Terpenoids Preserved in Fossils from Miocene-aged Japanese Conifer Wood. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	0
71	Chemical and Nutritional Compounds of Different Parts of Lemongrass (<i>Cymbopogon citratus</i>) Tj ETQq1 1	0.784314 1.4	rgBT /Overl
72	A Themed Issue in Honor of Professor K. Hüsnü Can Baser—Outstanding Contributions in the Fields of Pharmacognosy, Phytochemistry, Botany and Ethnopharmacology. Molecules, 2021, 26, 5507.	3.8	0