Mark W Richards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7711570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined inhibition of Aurora-A and ATR kinases results in regression of MYCN-amplified neuroblastoma. Nature Cancer, 2021, 2, 312-326.	5.7	50
2	Phaseâ€separated foci of EML4â€ALK facilitate signalling and depend upon an active kinase conformation. EMBO Reports, 2021, 22, e53693.	2.0	31
3	Discovery and Optimization of wt-RET/KDR-Selective Inhibitors of RET ^{V804M} Kinase. ACS Medicinal Chemistry Letters, 2020, 11, 497-505.	1.3	8
4	EML4-ALK V3 oncogenic fusion proteins promote microtubule stabilization and accelerated migration through NEK9 and NEK7. Journal of Cell Science, 2020, 133, .	1.2	30
5	2-Arylamino-6-ethynylpurines are cysteine-targeting irreversible inhibitors of Nek2 kinase. RSC Medicinal Chemistry, 2020, 11, 707-731.	1.7	8
6	Orally bioavailable CDK9/2 inhibitor shows mechanism-based therapeutic potential in MYCN-driven neuroblastoma. Journal of Clinical Investigation, 2020, 130, 5875-5892.	3.9	40
7	Mitotic phosphorylation by NEK6 and NEK7 reduces the microtubule affinity of EML4 to promote chromosome congression. Science Signaling, 2019, 12, .	1.6	30
8	Mitotic spindle association of TACC3 requires Auroraâ€Aâ€dependent stabilization of a cryptic αâ€helix. EMBO Journal, 2018, 37, .	3.5	55
9	Mitotic phosphorylation regulates Hsp72 spindle localization by uncoupling ATP binding from substrate release. Science Signaling, 2018, 11, .	1.6	8
10	A moving target: structure and disorder in pursuit of Myc inhibitors. Biochemical Society Transactions, 2017, 45, 709-717.	1.6	26
11	Differential protein stability and clinical responses ofEML4-ALK fusion variants to various ALK inhibitors in advancedALK-rearranged non-small cell lung cancer. Annals of Oncology, 2017, 28, 791-797.	0.6	178
12	Characterization of Three Druggable Hot-Spots in the Aurora-A/TPX2 Interaction Using Biochemical, Biophysical, and Fragment-Based Approaches. ACS Chemical Biology, 2017, 12, 2906-2914.	1.6	40
13	Eml1 loss impairs apical progenitor spindle length and soma shape in the developing cerebral cortex. Scientific Reports, 2017, 7, 17308.	1.6	26
14	A closed conformation of the Caenorhabditis elegans separase–securin complex. Open Biology, 2016, 6, 160032.	1.5	10
15	Allosteric inhibition of Aurora-A kinase by a synthetic vNAR domain. Open Biology, 2016, 6, 160089.	1.5	39
16	Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13726-13731.	3.3	130
17	Molecular mechanisms that underpin EML4-ALK driven cancers and their response to targeted drugs. Cellular and Molecular Life Sciences, 2016, 73, 1209-1224.	2.4	80
18	Microtubule association of EML proteins and the EML4-ALK variant 3 oncoprotein require an N-terminal trimerization domain. Biochemical Journal, 2015, 467, 529-536.	1.7	73

MARK W RICHARDS

#	Article	IF	CITATIONS
19	Hsp72 is targeted to the mitotic spindle by Nek6 to promote K-fiber assembly and mitotic progression. Journal of Cell Biology, 2015, 209, 349-358.	2.3	44
20	Mechanistic basis of Nek7 activation through Nek9 binding and induced dimerization. Nature Communications, 2015, 6, 8771.	5.8	43
21	Molecular mechanisms of human IRE1 activation through dimerization and ligand binding. Oncotarget, 2015, 6, 13019-13035.	0.8	49
22	Crystal structure of EML1 reveals the basis for Hsp90 dependence of oncogenic EML4-ALK by disruption of an atypical β-propeller domain. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5195-5200.	3.3	93
23	Coordination of adjacent domains mediates TACC3–ch-TOG–clathrin assembly and mitotic spindle binding. Journal of Cell Biology, 2013, 202, 463-478.	2.3	76
24	Structural Basis of Poly(ADP-ribose) Recognition by the Multizinc Binding Domain of Checkpoint with Forkhead-associated and RING Domains (CHFR). Journal of Biological Chemistry, 2010, 285, 39348-39358.	1.6	54
25	Crystal structure of an Aurora-A mutant that mimics Aurora-B bound to MLN8054: insights into selectivity and drug design. Biochemical Journal, 2010, 427, 19-28.	1.7	86
26	A Pocket on the Surface of the N-Terminal BRCT Domain of Mcph1 Is Required to Prevent Abnormal Chromosome Condensation. Journal of Molecular Biology, 2010, 395, 908-915.	2.0	12
27	Insights into the Conformational Variability and Regulation of Human Nek2 Kinase. Journal of Molecular Biology, 2009, 386, 476-485.	2.0	47
28	An Autoinhibitory Tyrosine Motif in the Cell-Cycle-Regulated Nek7 Kinase Is Released through Binding of Nek9. Molecular Cell, 2009, 36, 560-570.	4.5	83
29	The HOOK-Domain Between the SH3- and the GK-Domains of Ca _V β Subunits Contains Key Determinants Controlling Calcium Channel Inactivation. Channels, 2007, 1, 92-101.	1.5	32
30	The importance of occupancy rather than affinity of CaVβ subunits for the calcium channel I-II linker in relation to calcium channel function. Journal of Physiology, 2006, 574, 387-398.	1.3	26
31	Interaction via a Key Tryptophan in the I-II Linker of N-Type Calcium Channels Is Required for Â1 But Not for Palmitoylated Â2, Implicating an Additional Binding Site in the Regulation of Channel Voltage-Dependent Properties. Journal of Neuroscience, 2005, 25, 6984-6996.	1.7	75
32	Ca2+ channel β-subunits: structural insights AID our understanding. Trends in Pharmacological Sciences, 2004, 25, 626-632.	4.0	100
33	EML4-ALK V3 Drives Cell Migration Through NEK9 and NEK7 Kinases in Non-Small-Cell Lung Cancer. SSRN Electronic Journal, 0, , .	0.4	0