
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7711469/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PlasmidHostFinder: Prediction of Plasmid Hosts Using Random Forest. MSystems, 2022, 7, e0118021.	1.7	8
2	Metagenomic DNA sequencing for semi-quantitative pathogen detection from urine: a prospective, laboratory-based, proof-of-concept study. Lancet Microbe, The, 2022, , .	3.4	7
3	Automated download and clean-up of family-specific databases for kmer-based virus identification. Bioinformatics, 2021, 37, 705-710.	1.8	4
4	MINTyper: an outbreak-detection method for accurate and rapid SNP typing of clonal clusters with noisy long reads. Biology Methods and Protocols, 2021, 6, bpab008.	1.0	10
5	Machine learning predicts and provides insights into milk acidification rates of Lactococcus lactis. PLoS ONE, 2021, 16, e0246287.	1.1	7
6	Rapid Open-Source SNP-Based Clustering Offers an Alternative to Core Genome MLST for Outbreak Tracing in a Hospital Setting. Frontiers in Microbiology, 2021, 12, 636608.	1.5	3
7	Predicting Antimicrobial Resistance Using Partial Genome Alignments. MSystems, 2021, 6, e0018521.	1.7	11
8	Identification of Single-Nucleotide Polymorphisms in the Mitochondrial Genome and Kelch 13 Gene of Plasmodium falciparum in Different Geographical Populations. American Journal of Tropical Medicine and Hygiene, 2021, , .	0.6	1
9	Understanding and predicting ciprofloxacin minimum inhibitory concentration in Escherichia coli with machine learning. Scientific Reports, 2020, 10, 15026.	1.6	24
10	<i>In Silico</i> Genotyping of Escherichia coli Isolates for Extraintestinal Virulence Genes by Use of Whole-Genome Sequencing Data. Journal of Clinical Microbiology, 2020, 58, .	1.8	179
11	ResFinder 4.0 for predictions of phenotypes from genotypes. Journal of Antimicrobial Chemotherapy, 2020, 75, 3491-3500.	1.3	1,523
12	AnOxPePred: using deep learning for the prediction of antioxidative properties of peptides. Scientific Reports, 2020, 10, 21471.	1.6	71
13	Large scale automated phylogenomic analysis of bacterial isolates and the Evergreen Online platform. Communications Biology, 2020, 3, 137.	2.0	7
14	An interactive database for the investigation of high-density peptide microarray guided interaction patterns and antivenom cross-reactivity. PLoS Neglected Tropical Diseases, 2020, 14, e0008366.	1.3	10
15	Metaphylogenetic analysis of global sewage reveals that bacterial strains associated with human disease show less degree of geographic clustering. Scientific Reports, 2020, 10, 3033.	1.6	7
16	CCMetagen: comprehensive and accurate identification of eukaryotes and prokaryotes in metagenomic data. Genome Biology, 2020, 21, 103.	3.8	91
17	Prediction of Acquired Antimicrobial Resistance for Multiple Bacterial Species Using Neural Networks. MSystems, 2020, 5, .	1.7	36
18	Accelerating surveillance and research of antimicrobial resistance – an online repository for sharing of antimicrobial susceptibility data associated with whole-genome sequences. Microbial Genomics, 2020, 6, .	1.0	5

#	Article	IF	CITATIONS
19	Ceftriaxone use in a tertiary care hospital in Kilimanjaro, Tanzania: A need for a hospital antibiotic stewardship programme. PLoS ONE, 2019, 14, e0220261.	1.1	27
20	Proof of concept: used malaria rapid diagnostic tests applied for parallel sequencing for surveillance of molecular markers of anti-malarial resistance in Bissau, Guinea-Bissau during 2014–2017. Malaria Journal, 2019, 18, 252.	0.8	17
21	High-Throughput Sequencing-Based Investigation of Viruses in Human Cancers by Multienrichment Approach. Journal of Infectious Diseases, 2019, 220, 1312-1324.	1.9	13
22	Specific gut microbiome members are associated with distinct immune markers in pediatric allogeneic hematopoietic stem cell transplantation. Microbiome, 2019, 7, 131.	4.9	65
23	Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nature Communications, 2019, 10, 1124.	5.8	612
24	Using WGS to identify antibiotic resistance genes and predict antimicrobial resistance phenotypes in MDR Acinetobacter baumannii in Tanzania. Journal of Antimicrobial Chemotherapy, 2019, 74, 1484-1493.	1.3	46
25	LRE-Finder, a Web tool for detection of the 23S rRNA mutations and the optrA, cfr, cfr(B) and poxtA genes encoding linezolid resistance in enterococci from whole-genome sequences. Journal of Antimicrobial Chemotherapy, 2019, 74, 1473-1476.	1.3	58
26	The COMPARE Data Hubs. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	28
27	Improved Resistance Prediction in Mycobacterium tuberculosis by Better Handling of Insertions and Deletions, Premature Stop Codons, and Filtering of Non-informative Sites. Frontiers in Microbiology, 2019, 10, 2464.	1.5	7
28	Prevalence and risk factors for CTX-M gram-negative bacteria in hospitalized patients at a tertiary care hospital in Kilimanjaro, Tanzania. European Journal of Clinical Microbiology and Infectious Diseases, 2018, 37, 897-906.	1.3	17
29	SCC <i>mec</i> Finder, a Web-Based Tool for Typing of Staphylococcal Cassette Chromosome <i>mec</i> in Staphylococcus aureus Using Whole-Genome Sequence Data. MSphere, 2018, 3, .	1.3	197
30	CHTyper, a Web Tool for Subtyping of Extraintestinal Pathogenic Escherichia coli Based on the <i>fumC</i> and <i>fimH</i> Alleles. Journal of Clinical Microbiology, 2018, 56, .	1.8	42
31	Antibody Cross-Reactivity in Antivenom Research. Toxins, 2018, 10, 393.	1.5	33
32	Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics, 2018, 19, 307.	1.2	433
33	Hospital Epidemiology of Methicillin-Resistant <i>Staphylococcus aureus</i> in a Tertiary Care Hospital in Moshi, Tanzania, as Determined by Whole Genome Sequencing. BioMed Research International, 2018, 2018, 1-12.	0.9	14
34	Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nature Microbiology, 2018, 3, 898-908.	5.9	230
35	Whole genome sequencing reveals high clonal diversity of Escherichia coli isolated from patients in a tertiary care hospital in Moshi, Tanzania. Antimicrobial Resistance and Infection Control, 2018, 7, 72.	1.5	22
36	Molecular epidemiology of virulence and antimicrobial resistance determinants in Klebsiella pneumoniae from hospitalised patients in Kilimanjaro, Tanzania. European Journal of Clinical Microbiology and Infectious Diseases, 2018, 37, 1901-1914.	1.3	19

#	Article	IF	CITATIONS
37	Direct whole-genome sequencing of Plasmodium falciparum specimens from dried erythrocyte spots. Malaria Journal, 2018, 17, 91.	0.8	12
38	Bacterial whole genome-based phylogeny: construction of a new benchmarking dataset and assessment of some existing methods. BMC Genomics, 2017, 18, 19.	1.2	40
39	The CGE Tool Box. , 2017, , 65-90.		3
40	Norwegian patients and retail chicken meat share cephalosporin-resistant Escherichia coli and IncK/ bla CMY-2 resistance plasmids. Clinical Microbiology and Infection, 2017, 23, 407.e9-407.e15.	2.8	48
41	Patterns of infections, aetiological agents and antimicrobial resistance at a tertiary care hospital in northern Tanzania. Tropical Medicine and International Health, 2017, 22, 454-464.	1.0	43
42	Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Scientific Reports, 2017, 7, 40354.	1.6	65
43	Development of a Web Tool for Escherichia coli Subtyping Based on <i>fimH</i> Alleles. Journal of Clinical Microbiology, 2017, 55, 2538-2543.	1.8	136
44	High throughput resistance profiling of Plasmodium falciparum infections based on custom dual indexing and Illumina next generation sequencing-technology. Scientific Reports, 2017, 7, 2398.	1.6	57
45	Evaluating next-generation sequencing for direct clinical diagnostics in diarrhoeal disease. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 1325-1338.	1.3	36
46	High-density peptide microarray exploration of the antibody response in a rabbit immunized with a neurotoxic venom fraction. Toxicon, 2017, 138, 151-158.	0.8	12
47	PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. Journal of Antimicrobial Chemotherapy, 2017, 72, 2764-2768.	1.3	534
48	Assembly and analysis of 100 full MHC haplotypes from the Danish population. Genome Research, 2017, 27, 1597-1607.	2.4	15
49	RUCS: rapid identification of PCR primers for unique core sequences. Bioinformatics, 2017, 33, 3917-3921.	1.8	28
50	MGmapper: Reference based mapping and taxonomy annotation of metagenomics sequence reads. PLoS ONE, 2017, 12, e0176469.	1.1	66
51	Global Microbial Identifier. , 2017, , 13-31.		13
52	Sequencing and de novo assembly of 150 genomes from Denmark as a population reference. Nature, 2017, 548, 87-91.	13.7	130
53	Cross-recognition of a pit viper (Crotalinae) polyspecific antivenom explored through high-density peptide microarray epitope mapping. PLoS Neglected Tropical Diseases, 2017, 11, e0005768.	1.3	17
54	ArrayPitope: Automated Analysis of Amino Acid Substitutions for Peptide Microarray-Based Antibody Epitope Mapping. PLoS ONE, 2017, 12, e0168453.	1.1	11

#	Article	IF	CITATIONS
55	Multidrug-resistant Neisseria gonorrhoeae infection with ceftriaxone resistance and intermediate resistance to azithromycin, Denmark, 2017. Eurosurveillance, 2017, 22, .	3.9	83
56	Identification of Known and Novel Recurrent Viral Sequences in Data from Multiple Patients and Multiple Cancers. Viruses, 2016, 8, 53.	1.5	11
57	HostPhinder: A Phage Host Prediction Tool. Viruses, 2016, 8, 116.	1.5	112
58	A Bacterial Analysis Platform: An Integrated System for Analysing Bacterial Whole Genome Sequencing Data for Clinical Diagnostics and Surveillance. PLoS ONE, 2016, 11, e0157718.	1.1	161
59	ChemProt-3.0: a global chemical biology diseases mapping. Database: the Journal of Biological Databases and Curation, 2016, 2016, bav123.	1.4	75
60	New Genome-Wide Algorithm Identifies Novel In-Vivo Expressed Mycobacterium Tuberculosis Antigens Inducing Human T-Cell Responses with Classical and Unconventional Cytokine Profiles. Scientific Reports, 2016, 6, 37793.	1.6	69
61	Benchtop Whole-Genome Sequencing for Identification of Nosocomial Outbreaks in Tanzania. Infection Control and Hospital Epidemiology, 2016, 37, 622-623.	1.0	2
62	Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104. Applied and Environmental Microbiology, 2016, 82, 2516-2526.	1.4	105
63	Application of Whole-Genome Sequencing Data for O-Specific Antigen Analysis and <i>In Silico</i> Serotyping of Pseudomonas aeruginosa Isolates. Journal of Clinical Microbiology, 2016, 54, 1782-1788.	1.8	85
64	High-throughput immuno-profiling of mamba (Dendroaspis) venom toxin epitopes using high-density peptide microarrays. Scientific Reports, 2016, 6, 36629.	1.6	33
65	CD4+ T cells with an activated and exhausted phenotype distinguish immunodeficiency during aviremic HIV-2 infection. Aids, 2016, 30, 2415-2426.	1.0	30
66	Meta-analysis of proportion estimates of Extended-Spectrum-Beta-Lactamase-producing Enterobacteriaceae in East Africa hospitals. Antimicrobial Resistance and Infection Control, 2016, 5, 18.	1.5	70
67	Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data. Journal of Antimicrobial Chemotherapy, 2016, 71, 2484-2488.	1.3	166
68	Propionibacterium acnes: Disease-Causing Agent or Common Contaminant? Detection in Diverse Patient Samples by Next-Generation Sequencing. Journal of Clinical Microbiology, 2016, 54, 980-987.	1.8	87
69	MetaPhinder—ldentifying Bacteriophage Sequences in Metagenomic Data Sets. PLoS ONE, 2016, 11, e0163111.	1.1	59
70	Meta-genomic analysis of toilet waste from long distance flights; a step towards global surveillance of infectious diseases and antimicrobial resistance. Scientific Reports, 2015, 5, 11444.	1.6	74
71	Reads2Type: a web application for rapid microbial taxonomy identification. BMC Bioinformatics, 2015, 16, 398.	1.2	5
72	What Can We Learn from a Metagenomic Analysis of a Georgian Bacteriophage Cocktail?. Viruses, 2015, 7, 6570-6589.	1.5	38

#	Article	IF	CITATIONS
73	Multidimensional Clusters of CD4+ T Cell Dysfunction Are Primarily Associated with the CD4/CD8 Ratio in Chronic HIV Infection. PLoS ONE, 2015, 10, e0137635.	1.1	14
74	Novel variation and de novo mutation rates in population-wide de novo assembled Danish trios. Nature Communications, 2015, 6, 5969.	5.8	164
75	Insights from 20Âyears of bacterial genome sequencing. Functional and Integrative Genomics, 2015, 15, 141-161.	1.4	580
76	Automated benchmarking of peptide-MHC class I binding predictions. Bioinformatics, 2015, 31, 2174-2181.	1.8	127
77	High-throughput sequencing enhanced phage display enables the identification of patient-specific epitope motifs in serum. Scientific Reports, 2015, 5, 12913.	1.6	62
78	<i>Ebolavirus</i> comparative genomics. FEMS Microbiology Reviews, 2015, 39, 764-778.	3.9	54
79	T-bet and Eomes Are Differentially Linked to the Exhausted Phenotype of CD8+ T Cells in HIV Infection. PLoS Pathogens, 2014, 10, e1004251.	2.1	273
80	MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage. Journal of Experimental Medicine, 2014, 211, 1601-1610.	4.2	196
81	Rapid Whole-Genome Sequencing for Detection and Characterization of Microorganisms Directly from Clinical Samples. Journal of Clinical Microbiology, 2014, 52, 3136-3136.	1.8	9
82	<i>In Silico</i> Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrobial Agents and Chemotherapy, 2014, 58, 3895-3903.	1.4	3,558
83	Rapid Whole-Genome Sequencing for Detection and Characterization of Microorganisms Directly from Clinical Samples. Journal of Clinical Microbiology, 2014, 52, 139-146.	1.8	424
84	Benchmarking of Methods for Genomic Taxonomy. Journal of Clinical Microbiology, 2014, 52, 1529-1539.	1.8	241
85	Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nature Biotechnology, 2014, 32, 822-828.	9.4	909
86	Real-Time Whole-Genome Sequencing for Routine Typing, Surveillance, and Outbreak Detection of Verotoxigenic Escherichia coli. Journal of Clinical Microbiology, 2014, 52, 1501-1510.	1.8	1,142
87	Multiparametric Bioinformatics Distinguish the CD4/CD8 Ratio as a Suitable Laboratory Predictor of Combined T Cell Pathogenesis in HIV Infection. Journal of Immunology, 2014, 192, 2099-2108.	0.4	69
88	Net <scp>FCM</scp> : A semiâ€automated webâ€based method for flow cytometry data analysis. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 969-977.	1.1	5
89	Evaluation of Whole Genome Sequencing for Outbreak Detection of Salmonella enterica. PLoS ONE, 2014, 9, e87991.	1.1	215
90	Solving the Problem of Comparing Whole Bacterial Genomes across Different Sequencing Platforms. PLoS ONE, 2014, 9, e104984.	1.1	696

#	Article	IF	CITATIONS
91	NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ. Immunogenetics, 2013, 65, 711-724.	1.2	254
92	MHCcluster, a method for functional clustering of MHC molecules. Immunogenetics, 2013, 65, 655-665.	1.2	116
93	Evaluation of peptide selection approaches for epitopeâ€based vaccine design. Tissue Antigens, 2013, 82, 243-251.	1.0	27
94	Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. Journal of Antimicrobial Chemotherapy, 2013, 68, 771-777.	1.3	307
95	Identification of Y-Chromosomally Encoded Minor Histocompatibility Antigens Using a Reverse Immunology Approach. Biology of Blood and Marrow Transplantation, 2013, 19, S335.	2.0	0
96	Bioinformatics Identification of Antigenic Peptide: Predicting the Specificity of Major MHC Class I and II Pathway Players. Methods in Molecular Biology, 2013, 960, 247-260.	0.4	2
97	Structural analysis of B-cell epitopes in antibody:protein complexes. Molecular Immunology, 2013, 53, 24-34.	1.0	237
98	SigniSite: Identification of residue-level genotype-phenotype correlations in protein multiple sequence alignments. Nucleic Acids Research, 2013, 41, W286-W291.	6.5	18
99	Low-Bandwidth and Non-Compute Intensive Remote Identification of Microbes from Raw Sequencing Reads. PLoS ONE, 2013, 8, e83784.	1.1	5
100	Simultaneous alignment and clustering of peptide data using a Gibbs sampling approach. Bioinformatics, 2013, 29, 8-14.	1.8	134
101	Targeting of Conserved Gag-Epitopes in Early HIV Infection Is Associated with Lower Plasma Viral Load and Slower CD4 ⁺ T Cell Depletion. AIDS Research and Human Retroviruses, 2013, 29, 602-612.	0.5	11
102	PathogenFinder - Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data. PLoS ONE, 2013, 8, e77302.	1.1	365
103	Reliable B Cell Epitope Predictions: Impacts of Method Development and Improved Benchmarking. PLoS Computational Biology, 2012, 8, e1002829.	1.5	557
104	ChemProt-2.0: visual navigation in a disease chemical biology database. Nucleic Acids Research, 2012, 41, D464-D469.	6.5	50
105	Identification of acquired antimicrobial resistance genes. Journal of Antimicrobial Chemotherapy, 2012, 67, 2640-2644.	1.3	4,515
106	Predictions versus high-throughput experiments in T-cell epitope discovery: competition or synergy?. Expert Review of Vaccines, 2012, 11, 43-54.	2.0	39
107	Immune epitope database analysis resource. Nucleic Acids Research, 2012, 40, W525-W530.	6.5	446
108	Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria. Journal of Clinical Microbiology, 2012, 50, 1355-1361.	1.8	1,925

#	Article	IF	CITATIONS
109	Mycobacterium leprae virulence-associated peptides are indicators of exposure to M. leprae in Brazil, Ethiopia and Nepal. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 112-123.	0.8	17
110	Identification of a Novel UTYâ€Encoded Minor Histocompatibility Antigen. Scandinavian Journal of Immunology, 2012, 76, 141-150.	1.3	6
111	NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics, 2012, 64, 177-186.	1.2	333
112	The Cancer Exome Generated by Alternative mRNA Splicing Dilutes Predicted HLA Class I Epitope Density. PLoS ONE, 2012, 7, e38670.	1.1	14
113	Characterization of HIV-Specific CD4+ T Cell Responses against Peptides Selected with Broad Population and Pathogen Coverage. PLoS ONE, 2012, 7, e39874.	1.1	22
114	Integrating Genome-based Informatics to Modernize Global Disease Monitoring, Information Sharing, and Response. Emerging Infectious Diseases, 2012, 18, e1-e1.	2.0	64
115	Integrating Genome-based Informatics to Modernize Global Disease Monitoring, Information Sharing, and Response. Emerging Infectious Diseases, 2012, 18, e1-e1.	2.0	61
116	Bistability in autoimmune diseases. Autoimmunity, 2011, 44, 256-260.	1.2	12
117	Genome-Based In Silico Identification of New <i>Mycobacterium tuberculosis</i> Antigens Activating Polyfunctional CD8+ T Cells in Human Tuberculosis. Journal of Immunology, 2011, 186, 1068-1080.	0.4	50
118	NNAlign: A Web-Based Prediction Method Allowing Non-Expert End-User Discovery of Sequence Motifs in Quantitative Peptide Data. PLoS ONE, 2011, 6, e26781.	1.1	60
119	Human Leukocyte Antigen (HLA) Class I Restricted Epitope Discovery in Yellow Fewer and Dengue Viruses: Importance of HLA Binding Strength. PLoS ONE, 2011, 6, e26494.	1.1	30
120	Identification of MHC class II restricted T-cell-mediated reactivity against MHC class I binding Mycobacterium tuberculosis peptides. Immunology, 2011, 132, 482-491.	2.0	28
121	Prediction of epitopes using neural network based methods. Journal of Immunological Methods, 2011, 374, 26-34.	0.6	88
122	MULTIPRED2: A computational system for large-scale identification of peptides predicted to bind to HLA supertypes and alleles. Journal of Immunological Methods, 2011, 374, 53-61.	0.6	55
123	Machine learning competition in immunology – Prediction of HLA class I binding peptides. Journal of Immunological Methods, 2011, 374, 1-4.	0.6	53
124	Concepts in Mechanism Based Modeling. , 2011, , 19-41.		0
125	An Aboriginal Australian Genome Reveals Separate Human Dispersals into Asia. Science, 2011, 334, 94-98.	6.0	675
126	Porcine major histocompatibility complex (MHC) class I molecules and analysis of their peptide-binding specificities. Immunogenetics, 2011, 63, 821-834.	1.2	37

#	Article	IF	CITATIONS
127	Immune system simulation online. Bioinformatics, 2011, 27, 2013-2014.	1.8	82
128	ImmunoGrid: towards agent-based simulations of the human immune system at a natural scale . Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2799-2815.	1.6	39
129	Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics, 2010, 11, 568.	1.2	570
130	State of the art and challenges in sequence based T-cell epitope prediction. Immunome Research, 2010, 6, S3.	0.1	52
131	MHC Class II epitope predictive algorithms. Immunology, 2010, 130, 319-328.	2.0	198
132	Major histocompatibility complex class I binding predictions as a tool in epitope discovery. Immunology, 2010, 130, 309-318.	2.0	109
133	Computational Immunology Meets Bioinformatics: The Use of Prediction Tools for Molecular Binding in the Simulation of the Immune System. PLoS ONE, 2010, 5, e9862.	1.1	535
134	Identification of CD8+ T Cell Epitopes in the West Nile Virus Polyprotein by Reverse-Immunology Using NetCTL. PLoS ONE, 2010, 5, e12697.	1.1	41
135	In Silico Prediction of Human Pathogenicity in the Î ³ -Proteobacteria. PLoS ONE, 2010, 5, e13680.	1.1	14
136	Critical role of protein glycosylation in T cell immunity/autoimmunity. Annals of the Rheumatic Diseases, 2010, 69, A71-A72.	0.5	1
137	Interdisciplinary Analysis of HIV-Specific CD8+ T Cell Responses against Variant Epitopes Reveals Restricted TCR Promiscuity. Journal of Immunology, 2010, 184, 5383-5391.	0.4	34
138	The MHC Motif Viewer: A Visualization Tool for MHC Binding Motifs. Current Protocols in Immunology, 2010, 88, Unit 18.17.	3.6	32
139	CPHmodels-3.0—remote homology modeling using structure-guided sequence profiles. Nucleic Acids Research, 2010, 38, W576-W581.	6.5	305
140	NetMHCIIpan-2.0 - Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure. Immunome Research, 2010, 6, 9.	0.1	132
141	Degree of Predicted Minor Histocompatibility Antigen Mismatch Correlates with Poorer Clinical Outcomes in Nonmyeloablative Allogeneic Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2010, 16, 1370-1381.	2.0	11
142	Plasmodium falciparum population dynamics in a cohort of pregnant women in Senegal. Malaria Journal, 2010, 9, 165.	0.8	14
143	Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules. PLoS ONE, 2010, 5, e9272.	1.1	45
144	HLA Class I Binding 9mer Peptides from Influenza A Virus Induce CD4+ T Cell Responses. PLoS ONE, 2010, 5, e10533.	1.1	24

#	Article	IF	CITATIONS
145	Insight into Antigenic Diversity of VAR2CSA-DBL5ε Domain from Multiple Plasmodium falciparum Placental Isolates. PLoS ONE, 2010, 5, e13105.	1.1	14
146	The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding. Bioinformatics, 2009, 25, 1293-1299.	1.8	225
147	NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinformatics, 2009, 10, 296.	1.2	451
148	NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics, 2009, 61, 1-13.	1.2	725
149	Critical role of glycosylation in determining the length and structure of T cell epitopes. Immunome Research, 2009, 5, 4.	0.1	24
150	High-affinity human leucocyte antigen class I binding variola-derived peptides induce CD4+ T cell responses more than 30 years post-vaccinia virus vaccination. Clinical and Experimental Immunology, 2009, 155, 441-446.	1.1	18
151	Systematic Characterisation of Cellular Localisation and Expression Profiles of Proteins Containing MHC Ligands. PLoS ONE, 2009, 4, e7448.	1.1	33
152	The peptide-binding specificity of HLA-A*3001 demonstrates membership of the HLA-A3 supertype. Immunogenetics, 2008, 60, 633-643.	1.2	21
153	MHC motif viewer. Immunogenetics, 2008, 60, 759-765.	1.2	60
154	MHC-I-restricted epitopes conserved among variola and other related orthopoxviruses are recognized by T cells 30Âyears after vaccination. Archives of Virology, 2008, 153, 1833-1844.	0.9	16
155	Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Research, 2008, 36, W513-W518.	6.5	304
156	Broadly Immunogenic HLA Class I Supertype-Restricted Elite CTL Epitopes Recognized in a Diverse Population Infected with Different HIV-1 Subtypes. Journal of Immunology, 2008, 180, 5092-5100.	0.4	51
157	Quantitative Predictions of Peptide Binding to Any HLA-DR Molecule of Known Sequence: NetMHCIIpan. PLoS Computational Biology, 2008, 4, e1000107.	1.5	254
158	Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. Bioinformatics, 2008, 24, 1397-1398.	1.8	216
159	Structural Insight into Epitopes in the Pregnancy-Associated Malaria Protein VAR2CSA. PLoS Pathogens, 2008, 4, e42.	2.1	74
160	NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Research, 2008, 36, W509-W512.	6.5	722
161	Humans with chimpanzee-like major histocompatibility complex-specificities control HIV-1 infection. Aids, 2008, 22, 1299-1303.	1.0	7
162	Amino Acid Similarity Accounts for T Cell Cross-Reactivity and for "Holes―in the T Cell Repertoire. PLoS ONE, 2008, 3, e1831.	1.1	106

#	Article	IF	CITATIONS
163	Modeling the adaptive immune system: predictions and simulations. Bioinformatics, 2007, 23, 3265-3275.	1.8	115
164	CTL epitopes for influenza A including the H5N1 bird flu; genome-, pathogen-, and HLA-wide screening. Vaccine, 2007, 25, 2823-2831.	1.7	94
165	Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. Journal of Molecular Recognition, 2007, 20, 75-82.	1.1	209
166	Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics, 2007, 8, 238.	1.2	499
167	Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 2007, 8, 424.	1.2	687
168	NetMHCpan, a Method for Quantitative Predictions of Peptide Binding to Any HLA-A and -B Locus Protein of Known Sequence. PLoS ONE, 2007, 2, e796.	1.1	598
169	Improved method for predicting linear B-cell epitopes. Immunome Research, 2006, 2, 2.	0.1	1,034
170	Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Science, 2006, 15, 2558-2567.	3.1	525
171	Modelling the Human Immune System by Combining Bioinformatics and Systems Biology Approaches. Journal of Biological Physics, 2006, 32, 335-353.	0.7	19
172	Ten years of bacterial genome sequencing: comparative-genomics-based discoveries. Functional and Integrative Genomics, 2006, 6, 165-185.	1.4	156
173	The validity of predicted T-cell epitopes. Trends in Biotechnology, 2006, 24, 537-538.	4.9	59
174	TAP-Independent MHC Class I Presentation. Current Immunology Reviews, 2006, 2, 233-245.	1.2	19
175	A Community Resource Benchmarking Predictions of Peptide Binding to MHC-I Molecules. PLoS Computational Biology, 2006, 2, e65.	1.5	254
176	The Immune Epitope Database and Analysis Resource. Lecture Notes in Computer Science, 2006, , 126-132.	1.0	4
177	Epitope Mapping and Topographic Analysis of VAR2CSA DBL3X Involved in P. falciparum Placental Sequestration. PLoS Pathogens, 2006, 2, e124.	2.1	83
178	An integrative approach to CTL epitope prediction: A combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. European Journal of Immunology, 2005, 35, 2295-2303.	1.6	290
179	The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics, 2005, 57, 33-41.	1.2	416
180	The design and implementation of the immune epitope database and analysis resource. Immunogenetics, 2005, 57, 326-336.	1.2	105

#	Article	IF	CITATIONS
181	The Immune Epitope Database and Analysis Resource: From Vision to Blueprint. PLoS Biology, 2005, 3, e91.	2.6	342
182	Immunological Bioinformatics. , 2005, , .		49
183	Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics, 2004, 20, 1388-1397.	1.8	254
184	SARS CTL vaccine candidates; HLA supertype-, genome-wide scanning and biochemical validation. Tissue Antigens, 2004, 63, 395-400.	1.0	60
185	Coronavirus 3CLpro proteinase cleavage sites: possible relevance to SARS virus pathology. BMC Bioinformatics, 2004, 5, 72.	1.2	88
186	Definition of supertypes for HLA molecules using clustering of specificity matrices. Immunogenetics, 2004, 55, 797-810.	1.2	269
187	MHC Class I Epitope Binding Prediction Trained on Small Data Sets. Lecture Notes in Computer Science, 2004, , 217-225.	1.0	2
188	Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Science, 2003, 12, 1007-1017.	3.1	1,013
189	Selecting Informative Data for Developing Peptide-MHC Binding Predictors Using a Query by Committee Approach. Neural Computation, 2003, 15, 2931-2942.	1.3	14
190	Prediction of protein secondary structure at 80% accuracy. Proteins: Structure, Function and Bioinformatics, 2000, 41, 17-20.	1.5	112
191	MatrixPlot: visualizing sequence constraints. Bioinformatics, 1999, 15, 769-770.	1.8	33
192	TheN-linked glycan of the V3 region of HIV-1 gp120 and CXCR4-dependent multiplication of a human immunodeficiency virus type 1 lymphocyte-tropic variant. FEBS Letters, 1999, 454, 47-52.	1.3	19
193	Stoichiometry of Monoclonal Antibody Neutralization of T-Cell Line-Adapted Human Immunodeficiency Virus Type 1. Journal of Virology, 1999, 73, 8364-8370.	1.5	46
194	NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconjugate Journal, 1998, 15, 115-130.	1.4	493
195	O-GLYCBASE Version 3.0: a revised database of O-glycosylated proteins. Nucleic Acids Research, 1998, 26, 387-389.	6.5	16
196	Inhibition of HIV Type 1 Infectivity by Coexpression of a Wild-Type and a Defective Glycoprotein 120. AIDS Research and Human Retroviruses, 1998, 14, 1445-1450.	0.5	8
197	Induction of Antibodies against Epitopes Inaccessible on the HIV Type 1 Envelope Oligomer by Immunization with Recombinant Monomeric Glycoprotein 120. AIDS Research and Human Retroviruses, 1998, 14, 1451-1456.	0.5	24
198	Protein distance constraints predicted by neural networks and probability density functions. Protein Engineering, Design and Selection, 1997, 10, 1241-1248.	1.0	132

#	Article	IF	CITATIONS
199	O-GLYCBASE version 2.0: a revised database of O-glycosylated proteins. Nucleic Acids Research, 1997, 25, 278-282.	6.5	109
200	Complement-Mediated Enhancement of HIV-1 Infection in Peripheral Blood Mononuclear Cells. Scandinavian Journal of Infectious Diseases, 1997, 29, 447-452.	1.5	13
201	Gene therapy of T helper cells in HIV infection: Mathematical model of the criteria for clinical effect. Bulletin of Mathematical Biology, 1997, 59, 725-745.	0.9	25
202	Prediction of the secondary structure of HIV-1 gp120. , 1996, 25, 1-11.		35
203	Relationship between protein structure and geometrical constraints. Protein Science, 1996, 5, 2217-2225.	3.1	33
204	O-GLYCBASE: a revised database of O-glycosylated proteins. Nucleic Acids Research, 1996, 24, 248-252.	6.5	37
205	Distance distributions in proteins: a six-parameter representation. Protein Engineering, Design and Selection, 1996, 9, 733-740.	1.0	9
206	Prediction of O-glycosylation of mammalian proteins: specificity patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. Biochemical Journal, 1995, 308, 801-813.	1.7	260
207	Increased adhesion as a mechanism of antibody-dependent and antibody-independent complement-mediated enhancement of human immunodeficiency virus infection. Journal of Virology, 1995, 69, 2393-2400.	1.5	40
208	A model of enhancement and inhibition of HIV infection of monocytes by antibodies against HIV. Journal of Biological Physics, 1993, 19, 133-145.	0.7	12