Lukas Beule

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7711333/publications.pdf Version: 2024-02-01

LUKAS RELUE

#	Article	IF	CITATIONS
1	Soil bacterial community response to rhizoma peanut incorporation into Florida pastures. Journal of Environmental Quality, 2022, 51, 55-65.	1.0	8
2	Abundance, Diversity, and Function of Soil Microorganisms in Temperate Alley-Cropping Agroforestry Systems: A Review. Microorganisms, 2022, 10, 616.	1.6	21
3	Reduced Soil Gross N ₂ O Emission Driven by Substrates Rather Than Denitrification Gene Abundance in Cropland Agroforestry and Monoculture. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	6
4	The travelling particles: community dynamics of biofilms on microplastics transferred along a salinity gradient. ISME Communications, 2022, 2, .	1.7	15
5	Are shortâ€read amplicons suitable for the prediction of microbiome functional potential? A critical perspective. , 2022, 1, .		8
6	FusariumÂculmorum Produces NX-2 Toxin Simultaneously with Deoxynivalenol and 3-Acetyl-Deoxynivalenol or Nivalenol. Toxins, 2022, 14, 456.	1.5	5
7	Digging deeper: microbial communities in subsoil are strongly promoted by trees in temperate agroforestry systems. Plant and Soil, 2022, 480, 423-437.	1.8	8
8	Tree rows in temperate agroforestry croplands alter the composition of soil bacterial communities. PLoS ONE, 2021, 16, e0246919.	1.1	28
9	Relative Abundances of Species or Sequence Variants Can Be Misleading: Soil Fungal Communities as an Example. Microorganisms, 2021, 9, 589.	1.6	18
10	Soil N2O flux and nitrification and denitrification gene responses to feed-induced differences in the composition of dairy cow faeces. Biology and Fertility of Soils, 2021, 57, 767-779.	2.3	12
11	Black Soldier Fly Diet Impacts Soil Greenhouse Gas Emissions From Frass Applied as Fertilizer. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	17
12	The potential of ryegrass as cover crop to reduce soil <scp>N₂O</scp> emissions and increase the population size of denitrifying bacteria. European Journal of Soil Science, 2021, 72, 1447-1461.	1.8	12
13	Early response of soil fungal communities to the conversion of monoculture cropland to a temperate agroforestry system. PeerJ, 2021, 9, e12236.	0.9	9
14	â€~SRS' R Package and â€~q2-srs' QIIME 2 Plugin: Normalization of Microbiome Data Using Scaling with Ranked Subsampling (SRS). Applied Sciences (Switzerland), 2021, 11, 11473.	1.3	27
15	Improved Protocol for DNA Extraction from Subsoils Using Phosphate Lysis Buffer. Microorganisms, 2020, 8, 532.	1.6	32
16	High-Resolution Melting (HRM) Curve Assay for the Identification of Eight Fusarium Species Causing Ear Rot in Maize. Pathogens, 2020, 9, 270.	1.2	20
17	Improved normalization of species count data in ecology by scaling with ranked subsampling (SRS): application to microbial communities. PeerJ, 2020, 8, e9593.	0.9	113
18	Conversion of monoculture cropland and open grassland to agroforestry alters the abundance of soil bacteria, fungi and soil-N-cycling genes. PLoS ONE, 2019, 14, e0218779.	1.1	41

Lukas Beule

#	Article	IF	CITATIONS
19	Crop Diseases and Mycotoxin Accumulation in Temperate Agroforestry Systems. Sustainability, 2019, 11, 2925.	1.6	26
20	Poplar Rows in Temperate Agroforestry Croplands Promote Bacteria, Fungi, and Denitrification Genes in Soils. Frontiers in Microbiology, 2019, 10, 3108.	1.5	41
21	Soil bacterial and fungal communities of six bahiagrass cultivars. PeerJ, 2019, 7, e7014.	0.9	10
22	The Abundance of Fungi, Bacteria and Denitrification Genes during Insect Outbreaks in Scots Pine Forests. Forests, 2018, 9, 497.	0.9	6
23	Changes of Scots Pine Phyllosphere and Soil Fungal Communities during Outbreaks of Defoliating Insects. Forests, 2017, 8, 316.	0.9	15
24	Single versus repeated applications of CuO and Ag nanomaterials and their effect on soil microflora. Environmental Pollution, 2016, 215, 322-330.	3.7	34
25	High-resolution melting (HRM) curve analysis as a potential tool for the identification of earthworm species and haplotypes. PeerJ, 0, 10, e13661.	0.9	1