Melike Caglayan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7711021/publications.pdf

Version: 2024-02-01

840585 794469 25 446 11 19 citations g-index h-index papers 28 28 28 359 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structures of LIG1 engaging with mutagenic mismatches inserted by pol^2 in base excision repair. FASEB Journal, 2022, 36, .	0.2	O
2	Structures of LIG1 that engage with mutagenic mismatches inserted by $poll^2$ in base excision repair. Nature Communications, 2022, 13, .	5.8	9
3	DNA ligase I fidelity mediates the mutagenic ligation of pol \hat{I}^2 oxidized and mismatch nucleotide insertion products in base excision repair. Journal of Biological Chemistry, 2021, 296, 100427.	1.6	15
4	The coordination between DNA polymerase \hat{l}^2 and ligase governs the formation of mutagenic repair intermediates as an important determinant of faithful base excision repair. FASEB Journal, 2021, 35, .	0.2	1
5	The scaffold protein XRCC1 stabilizes the formation of polî²/gap DNA and ligase IIIα/nick DNA complexes in base excision repair. Journal of Biological Chemistry, 2021, 297, 101025.	1.6	11
6	Pol \hat{l}^2 gap filling, DNA ligation and substrate-product channeling during base excision repair opposite oxidized 5-methylcytosine modifications. DNA Repair, 2020, 95, 102945.	1.3	15
7	DNA ligase I variants fail in the ligation of mutagenic repair intermediates with mismatches and oxidative DNA damage. Mutagenesis, 2020, 35, 391-404.	1.0	13
8	The ligation of pol \hat{l}^2 mismatch insertion products governs the formation of promutagenic base excision DNA repair intermediates. Nucleic Acids Research, 2020, 48, 3708-3721.	6.5	19
9	Pol $\hat{l}\frac{1}{4}$ ribonucleotide insertion opposite 8-oxodG facilitates the ligation of premutagenic DNA repair intermediate. Scientific Reports, 2020, 10, 940.	1.6	8
10	Interplay between DNA Polymerases and DNA Ligases: Influence on Substrate Channeling and the Fidelity of DNA Ligation. Journal of Molecular Biology, 2019, 431, 2068-2081.	2.0	21
11	XRCC1 phosphorylation affects aprataxin recruitment and DNA deadenylation activity. DNA Repair, 2018, 64, 26-33.	1.3	13
12	Pol $\hat{l}\frac{1}{4}$ dGTP mismatch insertion opposite T coupled with ligation reveals promutagenic DNA repair intermediate. Nature Communications, 2018, 9, 4213.	5.8	20
13	Oxidized nucleotide insertion by pol \hat{l}^2 confounds ligation during base excision repair. Nature Communications, 2017, 8, 14045.	5.8	53
14	DNA polymerase \hat{l}^2 : A missing link of the base excision repair machinery in mammalian mitochondria. DNA Repair, 2017, 60, 77-88.	1.3	48
15	Complementation of aprataxin deficiency by base excision repair enzymes in mitochondrial extracts. Nucleic Acids Research, 2017, 45, 10079-10088.	6.5	24
16	Role of DNA polymerase \hat{I}^2 oxidized nucleotide insertion in DNA ligation failure. Journal of Radiation Research, 2017, 58, 603-607.	0.8	13
17	In vitro Assay to Measure DNA Polymerase \hat{l}^2 Nucleotide Insertion Coupled with the DNA Ligation Reaction during Base Excision Repair. Bio-protocol, 2017, 7, .	0.2	2
18	Impact of Ribonucleotide Backbone on Translesion Synthesis and Repair of 7,8-Dihydro-8-oxoguanine. Journal of Biological Chemistry, 2016, 291, 24314-24323.	1.6	21

#	Article	IF	CITATION:
19	Reprint of "Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repairâ€, DNA Repair, 2015, 36, 86-90.	1.3	4
20	Complementation of aprataxin deficiency by base excision repair enzymes. Nucleic Acids Research, 2015, 43, 2271-2281.	6.5	30
21	Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair. DNA Repair, 2015, 35, 85-89.	1.3	36
22	Enzymatic Activity Assays for Base Excision Repair Enzymes in Cell Extracts from Vertebrate Cells. Bio-protocol, 2015, 5, .	0.2	0
23	Base Excision Repair of Tandem Modifications in a Methylated CpG Dinucleotide. Journal of Biological Chemistry, 2014, 289, 13996-14008.	1.6	25
24	Role of polymerase \hat{I}^2 in complementing aprataxin deficiency during abasic-site base excision repair. Nature Structural and Molecular Biology, 2014, 21, 497-499.	3.6	43
25	Enzymatic Activity Assays in Yeast Cell Extracts. Bio-protocol, 2014, 4, .	0.2	2