
Sanjib K Behera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7710372/publications.pdf Version: 2024-02-01

SANUR K REHEDA

#	Article	IF	CITATIONS
1	Foliar zinc application for zinc biofortification in diverse wheat genotypes under low Zn soil. Cereal Research Communications, 2022, 50, 1269-1277.	0.8	2
2	Yield Variability in Oil Palm Plantations in Tropical India Is Influenced by Surface and Sub-Surface Soil Fertility and Leaf Mineral Nutrient Contents. Sustainability, 2022, 14, 2672.	1.6	2
3	Zinc dynamics and yield sustainability in relation to Zn application under maize-wheat cropping on Typic Hapludalfs. Field Crops Research, 2022, 283, 108525.	2.3	1
4	Assessing farm-scale spatial variability of soil nutrients in central India for site-specific nutrient management. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	1
5	The Scope for Using Proximal Soil Sensing by the Farmers of India. Sustainability, 2022, 14, 8561.	1.6	2
6	Establishing management zones of soil sulfur and micronutrients for sustainable crop production. Land Degradation and Development, 2021, 32, 3614-3625.	1.8	17
7	Phenological stages and degree days of oil palm crosses grown under irrigation in tropical conditions. Annals of Applied Biology, 2021, 178, 121-128.	1.3	7
8	Mulching and technological interventions avoid land degradation in an intensive oil palm (<scp><i>Elaeis guineensis</i></scp> Jacq.) production system. Land Degradation and Development, 2021, 32, 3785-3797.	1.8	10
9	Zinc application enhances yield and alters micronutrients concentration in pigeonpea (Cajanus cajan) Tj ETQq1	1 0.78431 1.1	l4 rgBT /Overle
10	Delineating the nutrient constraints and developing nutrient norms for cashew (Anacardium) Tj ETQq0 0 0 rgBT	/Overlock	2 10 Tf 50 382
11	Assessing Multi-Micronutrients Deficiency in Agricultural Soils of India. Sustainability, 2021, 13, 9136.	1.6	16
12	Soil and leaf potassium, calcium and magnesium in oil palm (Elaeis guineensis Jacq.) plantations grown on three different soils of India: Status, stoichiometry and relations. Industrial Crops and Products, 2021, 168, 113589.	2.5	4
13	Evaluation of spatial spreading of phyto-available sulphur and micronutrients in cultivated coastal soils. PLoS ONE, 2021, 16, e0258166.	1.1	9
14	Deficiency of phyto-available sulphur, zinc, boron, iron, copper and manganese in soils of India. Scientific Reports, 2021, 11, 19760.	1.6	39
15	Assessment of Agroeconomic Indicators of Sesamum indicum L. as Influenced by Application of Boron at Different Levels and Plant Growth Stages. Molecules, 2021, 26, 6699.	1.7	8
16	Interactive Effects of Foliar Application of Zinc, Iron and Nitrogen on Productivity and Nutritional Quality of Indian Mustard (Brassica juncea L.). Agronomy, 2021, 11, 2333.	1.3	15
17	Comparative Efficiency of Mineral, Chelated and Nano Forms of Zinc and Iron for Improvement of Zinc and Iron in Chickpea (Cicer arietinum L.) through Biofortification. Agronomy, 2021, 11, 2436.	1.3	26
18	Establishing optimal nutrient norms in leaf and soil for oil palm in India. Industrial Crops and Products, 2021, 174, 114223.	2.5	3

SANJIB K BEHERA

#	Article	IF	CITATIONS
19	Alleviating Soil Acidity: Optimization of Lime and Zinc Use in Maize (Zea mays L.) Grown on Alfisols. Communications in Soil Science and Plant Analysis, 2020, 51, 221-235.	0.6	2
20	Categorization of Diverse Wheat Genotypes for Zinc Efficiency Based on Higher Yield and Uptake Efficiency. Journal of Soil Science and Plant Nutrition, 2020, 20, 648-656.	1.7	8
21	Classification of Pigeonpea (Cajanus cajan (L.) Millsp.) Genotypes for Zinc Efficiency. Plants, 2020, 9, 952.	1.6	12
22	Oil palm cultivation enhances soil <scp>pH</scp> , electrical conductivity, concentrations of exchangeable calcium, magnesium, and available sulfur and soil organic carbon content. Land Degradation and Development, 2020, 31, 2789-2803.	1.8	11
23	Pre-monsoon spatial distribution of available micronutrients and sulphur in surface soils and their management zones in Indian Indo-Gangetic Plain. PLoS ONE, 2020, 15, e0234053.	1.1	22
24	Zinc Application Enhances Superoxide Dismutase and Carbonic Anhydrase Activities in Zinc-Efficient and Zinc-Inefficient Wheat Genotypes. Journal of Soil Science and Plant Nutrition, 2019, 19, 477-487.	1.7	41
25	Spatial variability of soil properties and delineation of soil management zones of oil palm plantations grown in a hot and humid tropical region of southern India. Catena, 2018, 165, 251-259.	2.2	72
26	Evaluation of spatial distribution and regional zone delineation for micronutrients in a semiarid Deccan Plateau Region of India. Land Degradation and Development, 2018, 29, 2449-2459.	1.8	18
27	Evaluation of Nutritional Status and Yield Limiting Nutrients in Oil Palm Plantations of Cauvery Delta Zone of Tamil Nadu. Journal of the Indian Society of Soil Science, 2018, 66, 89.	0.1	0
28	Soil fertility and yield-limiting nutrients in oil palm plantations of north-eastern state Mizoram of India. Journal of Plant Nutrition, 2017, 40, 1165-1171.	0.9	5
29	Spatial Distribution and Management Zones for Sulphur and Micronutrients in Shiwalik Himalayan Region of India. Land Degradation and Development, 2017, 28, 959-969.	1.8	54
30	Spatial variability of some soil properties varies in oil palm (<i>Elaeis) Tj ETQq0 0 0 rgBT /Overlock 979-993.</i>	10 Tf 50 1.2	307 Td (guine 35
31	Mapping spatial variability of leaf nutrient status of oil palm (Elaeis guineensis Jacq.) plantations in India. Crop and Pasture Science, 2016, 67, 109.	0.7	6
32	Oil Palm. , 2016, , 333-342.		0
33	Spatial variability of soil micronutrients in the intensively cultivated Trans-Gangetic Plains of India. Soil and Tillage Research, 2016, 163, 282-289.	2.6	53
34	Soil Nutrient Status and Leaf Nutrient Norms in Oil Palm (<i>Elaeis Guineensis</i> Jacq.) Plantations Grown in the West Coastal Area of India. Communications in Soil Science and Plant Analysis, 2016, 47, 255-262.	0.6	16
35	Estimation of potassium concentration in oil palm (<i>Elaeis guineensis</i> Jacq.) leaf tissue by simple and inexpensive water extraction method. Journal of Plant Nutrition, 2016, 39, 1250-1256.	0.9	0
36	Soil Nutrient Status and Leaf Nutrient Norms in Oil Palm (Elaeis guineensis Jacq.) Plantations Grown on Southern Plateau of India. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2016, 86, 691-697.	0.4	7

SANJIB K BEHERA

#	Article	IF	CITATIONS
37	Extractable boron in some acid soils of India: Status, spatial variability and relationship with soil properties. Journal of the Indian Society of Soil Science, 2016, 64, 183.	0.1	4
38	Yield and Zinc, Copper, Manganese and Iron Concentration in Maize (<i>Zea mays</i> L.) Grown on Vertisol as Influenced by Zinc Application from Various Zinc Fertilizers. Journal of Plant Nutrition, 2015, 38, 1544-1557.	0.9	26
39	Spatial Distribution of Surface Soil Acidity, Electrical Conductivity, Soil Organic Carbon Content and Exchangeable Potassium, Calcium and Magnesium in Some Cropped Acid Soils of India. Land Degradation and Development, 2015, 26, 71-79.	1.8	189
40	Evaluation of Zinc Polyphosphate as an Alternative Source of Zinc Fertilizer for Wheat (<i>Triticum) Tj ETQq0 0 C Science, 2015, 63, 454.</i>) rgBT /Ov 0.1	erlock 10 Tf 5 1
41	Total and Extractable Manganese and Iron in Some Cultivated Acid Soils of India: Status, Distribution and Relationship with Some Soil Properties. Pedosphere, 2014, 24, 196-208.	2.1	30
42	Different Forms of Potassium and Their Contributions toward Potassium Uptake under Long-Term Maize (Zea maysL.)–Wheat (Triticum aestivumL.)–Cowpea (Vigna unguiculataL.) Rotation on an Inceptisol. Communications in Soil Science and Plant Analysis, 2012, 43, 936-947.	0.6	3
43	Distribution variability of total and extractable zinc in cultivated acid soils of India and their relationship with some selected soil properties. Geoderma, 2011, 162, 242-250.	2.3	62
44	Fractions of Iron in Soil under a Long-Term Experiment and Their Contribution to Iron Availability and Uptake by Maize–Wheat Cropping Sequence. Communications in Soil Science and Plant Analysis, 2010, 41, 1538-1550.	0.6	4
45	Fractions of Copper in Soil under a Long-Term Experiment and Their Contribution to Copper Availability and Uptake by Maize—Wheat Cropping Sequence. Journal of Plant Nutrition, 2009, 32, 1092-1107.	0.9	3
46	Changes in Fractions of Iron, Manganese, Copper, and Zinc in Soil under Continuous Cropping for More Than Three Decades. Communications in Soil Science and Plant Analysis, 2009, 40, 1380-1407.	0.6	22
47	Distribution of fractions of zinc and their contribution towards availability and plant uptake of zinc under long-term maize (Zea mays L.) - wheat (Triticum aestivum L.) cropping on an Inceptisol. Soil	0.6	29