Ulrike Klueh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7709960/publications.pdf Version: 2024-02-01

HIDIKE KLIEH

#	Article	IF	CITATIONS
1	Insulin Derived Fibrils Induce Cytotoxicity <i>in vitro</i> and Trigger Inflammation in Murine Models. Journal of Diabetes Science and Technology, 2023, 17, 163-171.	1.3	6
2	A pharmacological approach assessing the role of mast cells in insulin infusion site inflammation. Drug Delivery and Translational Research, 2022, 12, 1711-1718.	3.0	2
3	Inflammation at Site of Insulin Infusion Diminishes Glycemic Control. Journal of Pharmaceutical Sciences, 2022, 111, 1952-1961.	1.6	4
4	Continuous Glucose Monitoring Devices: Past, Present, and Future Focus on the History and Evolution of Technological Innovation. Journal of Diabetes Science and Technology, 2021, 15, 676-683.	1.3	54
5	Advancing continuous subcutaneous insulin infusion in vivo: New insights into tissue challenges. Journal of Biomedical Materials Research - Part A, 2021, 109, 1065-1079.	2.1	12
6	Noninflammatory Stress-Induced Remodeling of Mandibular Bone: Impact of Age and Pregnancy. Journal of Oral and Maxillofacial Surgery, 2021, 79, 1147-1155.	0.5	5
7	Nourin-Dependent miR-137 and miR-106b: Novel Early Inflammatory Diagnostic Biomarkers for Unstable Angina Patients. Biomolecules, 2021, 11, 368.	1.8	9
8	Phenolic Preservative Removal from Commercial Insulin Formulations Reduces Tissue Inflammation while Maintaining Euglycemia. ACS Pharmacology and Translational Science, 2021, 4, 1161-1174.	2.5	11
9	Crosslinked basement membraneâ€based coatings enhance glucose sensor function and continuous glucose monitoring <i>in vivo</i> . Journal of Biomedical Materials Research - Part A, 2018, 106, 7-16.	2.1	7
10	Impact of CCL2 and CCR2 chemokine/receptor deficiencies on macrophage recruitment and continuous glucose monitoring in vivo. Biosensors and Bioelectronics, 2016, 86, 262-269.	5.3	22
11	Basement Membrane-Based Glucose Sensor Coatings Enhance Continuous Glucose Monitoring in Vivo. Journal of Diabetes Science and Technology, 2015, 9, 957-965.	1.3	9
12	Role of vascular networks in extending glucose sensor function: Impact of angiogenesis and lymphangiogenesis on continuous glucose monitoring <i>in vivo</i> . Journal of Biomedical Materials Research - Part A, 2014, 102, 3512-3522.	2.1	12
13	Cell based metabolic barriers to glucose diffusion: Macrophages and continuous glucose monitoring. Biomaterials, 2014, 35, 3145-3153.	5.7	35
14	Impact of macrophage deficiency and depletion on continuous glucose monitoring inÂvivo. Biomaterials, 2014, 35, 1789-1796.	5.7	15
15	Analysis: On the Path to Overcoming Glucose-Sensor-Induced Foreign Body Reactions. Journal of Diabetes Science and Technology, 2013, 7, 452-454.	1.3	12
16	Role of Interleukin-1/Interleukin-1 Receptor Antagonist Family of Cytokines in Long-Term Continuous Glucose Monitoring <i>In Vivo</i> . Journal of Diabetes Science and Technology, 2013, 7, 1538-1546.	1.3	5
17	Metabolic Biofouling of Glucose Sensors <i>in Vivo</i> : Role of Tissue Microhemorrhages. Journal of Diabetes Science and Technology, 2011, 5, 583-595.	1.3	58
18	Interstitial Fluid Physiology as it Relates to Glucose Monitoring Technologies: Symposium Introduction. Journal of Diabetes Science and Technology, 2011, 5, 579-582.	1.3	3

ULRIKE KLUEH

#	Article	IF	CITATIONS
19	Human monocyte activation by biologic and biodegradable meshes in vitro. Surgical Endoscopy and Other Interventional Techniques, 2010, 24, 805-811.	1.3	72
20	Critical role of tissue mast cells in controlling long-term glucose sensor function in vivo. Biomaterials, 2010, 31, 4540-4551.	5.7	42
21	Importance of Interleukin-1 and Interleukin-1 Receptor Antagonist in Short-Term Glucose Sensor Function in Vivo. Journal of Diabetes Science and Technology, 2010, 4, 1073-1086.	1.3	10
22	In Vitro Activation of Human Peripheral Blood Mononuclear Cells Induced by Human Biologic Meshes. Journal of Surgical Research, 2010, 158, 10-14.	0.8	34
23	Non-invasive glucose measurements in mice using mid-infrared emission spectroscopy. Sensors and Actuators B: Chemical, 2009, 142, 502-508.	4.0	9
24	Blood-Induced Interference of Glucose Sensor Function in Vitro: Implications for in Vivo Sensor Function. Journal of Diabetes Science and Technology, 2007, 1, 842-849.	1.3	13
25	Inflammation and Glucose Sensors: Use of Dexamethasone to Extend Glucose Sensor Function and Life Span <i>in Vivo</i> . Journal of Diabetes Science and Technology, 2007, 1, 496-504.	1.3	28
26	Continuous Glucose Monitoring in Normal Mice and Mice with Prediabetes and Diabetes. Diabetes Technology and Therapeutics, 2006, 8, 402-412.	2.4	56
27	Enhancement of implantable glucose sensor function in vivo using gene transfer-induced neovascularization. Biomaterials, 2005, 26, 1155-1163.	5.7	77
28	Murine Model of Implantable Glucose Sensors: A Novel Model for Glucose Sensor Development. Diabetes Technology and Therapeutics, 2005, 7, 727-737.	2.4	24
29	N-Acetyl-Cysteine Promotes Angiostatin Production and Vascular Collapse in an Orthotopic Model of Breast Cancer. American Journal of Pathology, 2004, 164, 1683-1696.	1.9	62
30	Ex ova chick chorioallantoic membrane as a novel model for evaluation of tissue responses to biomaterials and implants. Journal of Biomedical Materials Research Part B, 2003, 67A, 838-843.	3.0	38