Zhaoke Zheng

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7709707/zhaoke-zheng-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

140
papers5,464
citations36
h-index71
g-index151
ext. papers6,860
ext. citations10.4
avg, IF6.04
L-index

#	Paper	IF	Citations
140	Photocatalytic Selective Oxidation of HMF Coupled with H2 Evolution on Flexible Ultrathin g-C3N4 Nanosheets with Enhanced NH Interaction. <i>ACS Catalysis</i> , 2022 , 12, 1919-1929	13.1	12
139	Photoreforming of plastic waste poly (ethylene terephthalate) via in-situ derived CN-CNTs-NiMo hybrids. <i>Applied Catalysis B: Environmental</i> , 2022 , 307, 121143	21.8	2
138	Borate-modulated amorphous NiFeB nanocatalysts as highly active and stable electrocatalysts for oxygen evolution reaction. <i>Journal of Alloys and Compounds</i> , 2022 , 903, 163741	5.7	2
137	Boosting hot electrons transfer via laser-induced atomic redistribution for plasmon-enhanced nitroreduction and single-particle study. <i>Journal of Catalysis</i> , 2022 ,	7.3	2
136	Highly efficient electrocatalytic hydrogen evolution coupled with upcycling of microplastics in seawater enabled via Ni3N/W5N4 janus nanostructures. <i>Applied Catalysis B: Environmental</i> , 2022 , 307, 121198	21.8	4
135	g-C3N4/ITO/Co-BiVO4 Z-scheme composite for solar overall water splitting. <i>Chemical Engineering Journal</i> , 2022 , 433, 134476	14.7	4
134	Strain-assisted in-situ formed oxygen defective WO3 film for photothermal-synergistic reverse water gas shift reaction and single-particle study. <i>Chemical Engineering Journal</i> , 2022 , 433, 134199	14.7	0
133	Stress-induced BiVO4 photoanode for enhanced photoelectrochemical performance. <i>Applied Catalysis B: Environmental</i> , 2022 , 304, 121012	21.8	5
132	Improved photocatalytic CO2 and epoxides cycloaddition via the synergistic effect of Lewis acidity and charge separation over Zn modified UiO-bpydc. <i>Applied Catalysis B: Environmental</i> , 2022 , 301, 1207	′93 ^{1.8}	7
131	Zero-dimensional hydrazine iodobismuthate as a lead-free perovskite-like light absorber in a self-powered photodetector. <i>Journal of Alloys and Compounds</i> , 2022 , 893, 162347	5.7	2
130	Photococatalytic anticancer performance of naked Ag/AgCl nanoparticles. <i>Chemical Engineering Journal</i> , 2022 , 428, 131265	14.7	3
129	Enhanced stability and activity towards photocatalytic CO2 reduction via supercycle ALD of Cu and TiO2. <i>Chemical Engineering Journal</i> , 2022 , 429, 132022	14.7	2
128	Plasmon-Enhanced Water Activation for Hydrogen Evolution from Ammonia-Borane Studied at a Single-Particle Level. <i>ACS Catalysis</i> , 2022 , 12, 3558-3565	13.1	3
127	Strain Adjustment Realizes the Photocatalytic Overall Water Splitting on Tetragonal Zircon BiVO <i>Advanced Science</i> , 2022 , e2105299	13.6	6
126	Photoelectrochemical Oxidation of Amines to Imines and Production of Hydrogen through Mo-Doped BiVO Photoanode <i>ACS Omega</i> , 2022 , 7, 12816-12824	3.9	O
125	Synergistic effect between boron containing metal-organic frameworks and light leading to enhanced CO2 cycloaddition with epoxides. <i>Chemical Engineering Journal</i> , 2022 , 437, 135363	14.7	1
124	A biocompatible bismuth based metal-organic framework as efficient light-sensitive drug carrier <i>Journal of Colloid and Interface Science</i> , 2022 , 617, 578-584	9.3	O

(2021-2022)

123	Space-confined growth of lead-free halide perovskite Cs3Bi2Br9 in MCM-41 molecular sieve as an efficient photocatalyst for CO2 reduction at the gasBolid condition under visible light. <i>Applied Catalysis B: Environmental</i> , 2022 , 310, 121375	21.8	7	
122	NiCoP-CeO composites for efficient electrochemical oxygen evolution <i>RSC Advances</i> , 2022 , 12, 13639-	13,644		
121	Boosting H Production from BiVO Photoelectrochemical Biomass Fuel Cell by the Construction of a Bridge for Charge and Energy Transfer <i>Advanced Materials</i> , 2022 , e2201594	24	2	
120	Molten-salt assisted synthesis of Cu clusters modified TiO2 with oxygen vacancies for efficient photocatalytic reduction of CO2 to CO. <i>Chemical Engineering Journal</i> , 2022 , 445, 136718	14.7	2	
119	In situ observation of photo-induced shortening of single Au nanorod for plasmon-enhanced formic acid dehydrogenation 2022 , 100014			
118	Targeted Regulation of the Electronic States of Nickel Toward the Efficient Electrosynthesis of Benzonitrile and Hydrogen Production. <i>ACS Applied Materials & District Amplied Materials & Di</i>	9.5	3	
117	Enhanced photocatalytic driven hydroxylation of phenylboric acid to phenol over pyrenetetrasulfonic acid intercalated ZnAl-LDHs <i>Journal of Colloid and Interface Science</i> , 2021 , 610, 455-462	9.3	О	
116	Plasmon-Mediated Nitrobenzene Hydrogenation with Formate as the Hydrogen Donor Studied at a Single-Particle Level. <i>ACS Catalysis</i> , 2021 , 11, 3801-3809	13.1	15	
115	Atomically dispersed cobalt-based species anchored on polythiophene as an efficient electrocatalyst for oxygen evolution reaction. <i>Applied Surface Science</i> , 2021 , 545, 148943	6.7	9	
114	Oxygen vacancy enhancing CO2 electrochemical reduction to CO on Ce-doped ZnO catalysts. <i>Surfaces and Interfaces</i> , 2021 , 23, 100923	4.1	6	
113	In-situ growth of Ti3C2@MIL-NH2 composite for highly enhanced photocatalytic H2 evolution. <i>Chemical Engineering Journal</i> , 2021 , 411, 128446	14.7	14	
112	2D/2D heterostructure of ultrathin BiVO4/Ti3C2 nanosheets for photocatalytic overall Water splitting. <i>Applied Catalysis B: Environmental</i> , 2021 , 285, 119855	21.8	32	
111	TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde. <i>Applied Catalysis B: Environmental</i> , 2021 , 286, 119885	21.8	38	
110	Enhancing Electrocatalytic N2 Conversion to NH3 by MnO2 Ultralong Nanowires with Oxygen Vacancies. <i>Journal of Photocatalysis</i> , 2021 , 2, 140-146	0.8		
109	Substrate-dependent ALD of Cux on TiO2 and its performance in photocatalytic CO2 reduction. <i>Chemical Engineering Journal</i> , 2021 , 405, 126654	14.7	13	
108	Tailoring the composition and structure of Ni3S2 by introduction of Co towards high efficiency energy storage device. <i>Chemical Engineering Journal</i> , 2021 , 403, 126285	14.7	19	
107	Boosting the electrocatalytic HER performance of Ni3N-V2O3 via the interface coupling effect. <i>Applied Catalysis B: Environmental</i> , 2021 , 283, 119590	21.8	35	
106	Bias-Free Solar Water Splitting by Tetragonal Zircon BiVO4 Nanocrystal Photocathode and Monoclinic Scheelite BiVO4 Nanoporous Photoanode. <i>Advanced Functional Materials</i> , 2021 , 31, 2008656	515.6	19	

105	The synergy of thermal exfoliation and phosphorus doping in g-C3N4 for improved photocatalytic H2 generation. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 3595-3604	6.7	11
104	Tuning the Conduction Band Potential of Bi-based Semiconductors Using a Combination of Organic Ligands. <i>ChemSusChem</i> , 2021 , 14, 892-897	8.3	1
103	Boron containing metal-organic framework for highly selective photocatalytic production of HO by promoting two-electron O reduction. <i>Materials Horizons</i> , 2021 , 8, 2842-2850	14.4	3
102	Light-Promoted CO2 Conversion from Epoxides to Cyclic Carbonates at Ambient Conditions over a Bi-Based Metal (Drganic Framework. ACS Catalysis, 2021, 11, 1988-1994)	13.1	28
101	Two-dimensional d conjugated metalorganic framework Fe3(hexaiminotriphenylene)2 as a photo-Fenton like catalyst for highly efficient degradation of antibiotics. <i>Applied Catalysis B: Environmental</i> , 2021 , 290, 120029	21.8	19
100	Probing the Mechanism of Plasmon-Enhanced Ammonia Borane Methanolysis on a CuAg Alloy at a Single-Particle Level. <i>ACS Catalysis</i> , 2021 , 11, 10814-10823	13.1	9
99	Nitrogen vacancy enhanced photocatalytic selective oxidation of benzyl alcohol in g-C3N4. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 37782-37782	6.7	5
98	Design and synthesis of BiVO4@CuOx as a photo assisted Fenton-like catalyst for efficient degradation of tetracycline. <i>Surfaces and Interfaces</i> , 2021 , 26, 101380	4.1	1
97	In situ integration of Fe3N@Co4N@CoFe alloy nanoparticles as efficient and stable electrocatalyst for overall water splitting. <i>Electrochimica Acta</i> , 2021 , 395, 139218	6.7	1
96	Enhanced singlet oxygen production over a photocatalytic stable metal organic framework composed of porphyrin and Ag. <i>Journal of Colloid and Interface Science</i> , 2021 , 602, 300-306	9.3	4
95	Ag/AgCl as an efficient plasmonic photocatalyst for greenhouse gaseous methane oxidation. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 106435	6.8	0
94	Surface Fluorination Engineering of NiFe Prussian Blue Analogue Derivatives for Highly Efficient Oxygen Evolution Reaction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 5142-5152	9.5	20
93	Host dependent electrocatalytic hydrogen evolution of Ni/TiO2 composites. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 6325-6334	13	2
92	Promoting Electrocatalytic Reduction of CO to C H Production by Inhibiting C H OH Desorption from Cu O/C Composite <i>Small</i> , 2021 , e2105212	11	4
91	Photostable Ag(I)-Based Metal-Organic Framework: Synthesis, Structure, and Photocatalytic Selective Oxidation Properties. <i>Inorganic Chemistry</i> , 2020 , 59, 16127-16131	5.1	6
90	Oxygen-Vacancy-Enhanced Singlet Oxygen Production for Selective Photocatalytic Oxidation. <i>ChemSusChem</i> , 2020 , 13, 3488-3494	8.3	20
89	Molybdenum Nitride Electrocatalysts for Hydrogen Evolution More Efficient than Platinum/Carbon: MoN/CeO@Nickel Foam. <i>ACS Applied Materials & Damp; Interfaces</i> , 2020 , 12, 29153-29161	9.5	11
88	Plasmon-induced dehydrogenation of formic acid on Pd-dotted Ag@Au hexagonal nanoplates and single-particle study. <i>Applied Catalysis B: Environmental</i> , 2020 , 277, 119226	21.8	21

(2020-2020)

87	Molecular delineation of small supernumerary marker chromosomes using a single nucleotide polymorphism array. <i>Molecular Cytogenetics</i> , 2020 , 13, 19	2	2	
86	Co3(hexaiminotriphenylene)2: A conductive two-dimensional d conjugated metalorganic framework for highly efficient oxygen evolution reaction. <i>Applied Catalysis B: Environmental</i> , 2020 , 278, 119295	21.8	36	
85	Synthesis of Synergistic Nitrogen-Doped NiMoO4/Ni3N Heterostructure for Implementation of an Efficient Alkaline Electrocatalytic Hydrogen Evolution Reaction. <i>ACS Applied Energy Materials</i> , 2020 , 3, 2440-2449	6.1	12	
84	A pulse electrodeposited amorphous tunnel layer stabilises Cu2O for efficient photoelectrochemical water splitting under visible-light irradiation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5638-5646	13	53	
83	Electrodeposition of NiFe layered double hydroxide on Ni3S2 nanosheets for efficient electrocatalytic water oxidation. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 8659-8666	6.7	19	
82	One-step synthesis of Co-doped 1T-MoS2 nanosheets with efficient and stable HER activity in alkaline solutions. <i>Materials Chemistry and Physics</i> , 2020 , 244, 122642	4.4	26	
81	Synthesis of novel cubic Ni2Mo3N and its electronic structure regulation by vanadium doping towards high-efficient HER electrocatalyst. <i>Electrochimica Acta</i> , 2020 , 337, 135689	6.7	6	
80	CuO Nanoparticles with Both {100} and {111} Facets for Enhancing the Selectivity and Activity of CO Electroreduction to Ethylene. <i>Advanced Science</i> , 2020 , 7, 1902820	13.6	97	
79	ZnO nanorod decorated by Au-Ag alloy with greatly increased activity for photocatalytic ethylene oxidation. <i>Chinese Journal of Catalysis</i> , 2020 , 41, 1613-1621	11.3	9	
78	ZnGeP2: A near-infrared-activated photocatalyst for hydrogen production. <i>Frontiers of Physics</i> , 2020 , 15, 1	3.7	4	
77	miR-92 Regulates the Proliferation, Migration, Invasion and Apoptosis of Glioma Cells by Targeting Neogenin. <i>Open Medicine (Poland)</i> , 2020 , 15, 283-291	2.2	O	
76	High-efficient electrocatalytic overall water splitting over vanadium doped hexagonal Ni0.2Mo0.8N. <i>Applied Catalysis B: Environmental</i> , 2020 , 263, 118330	21.8	65	
75	Improving the HER activity of Ni3FeN to convert the superior OER electrocatalyst to an efficient bifunctional electrocatalyst for overall water splitting by doping with molybdenum. <i>Electrochimica Acta</i> , 2020 , 333, 135488	6.7	20	
74	Research progress and surface/interfacial regulation methods for electrophotocatalytic hydrogen production from water splitting. <i>Materials Today Energy</i> , 2020 , 18, 100524	7	12	
73	Ni3B as a highly efficient and selective catalyst for the electrosynthesis of hydrogen peroxide. <i>Applied Catalysis B: Environmental</i> , 2020 , 279, 119371	21.8	24	
72	Enhancing the Photoelectrochemical Water Oxidation Reaction of BiVO4 Photoanode by Employing Carbon Spheres as Electron Reservoirs. <i>ACS Catalysis</i> , 2020 , 10, 13031-13039	13.1	18	
71	Lead-Free Halide Perovskite Cs Bi Sb I (x 🛈 .3) Possessing the Photocatalytic Activity for Hydrogen Evolution Comparable to that of (CH NH)PbI. <i>Advanced Materials</i> , 2020 , 32, e2001344	24	42	
70	In situ extract nucleate sites for the growth of free-standing carbon nitride films on various substrates. <i>Catalysis Today</i> , 2020 , 340, 92-96	5.3	3	

69	Design and synthesis of porous M-ZnO/CeO2 microspheres as efficient plasmonic photocatalysts for nonpolar gaseous molecules oxidation: Insight into the role of oxygen vacancy defects and M=Ag, Au nanoparticles. <i>Applied Catalysis B: Environmental</i> , 2020 , 260, 118151	21.8	71
68	Plasmon-Driven Modulation of Reaction Pathways of Individual Pt-Modified Au Nanorods. <i>Nano Letters</i> , 2020 , 20, 3326-3330	11.5	13
67	Ag2ZnSnS4/Mo-mesh photoelectrode prepared by electroplating for efficient photoelectrochemical hydrogen generation. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 1647-1657	13	21
66	Accelerated electrocatalytic hydrogen evolution on non-noble metal containing trinickel nitride by introduction of vanadium nitride. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 5513-5521	13	46
65	Enhanced photocatalytic hydrogen evolution of CdWO4 through polar organic molecule modification. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 4754-4763	6.7	12
64	Polar Molecular Modification onto BiOBr to Regulate Molecular Oxygen Activation. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 15599-15605	3.8	17
63	Enhanced photocatalytic activity towards H2 evolution over NiO via phosphonic acid surface modification with different functional groups. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 16575	5 ⁶ 7658	1 ¹⁰
62	Selective photocatalytic conversion of alcohol to aldehydes by singlet oxygen over Bi-based metal-organic frameworks under UV lis light irradiation. <i>Applied Catalysis B: Environmental</i> , 2019 , 254, 463-470	21.8	46
61	Effect of the intra- and inter-triazine N-vacancies on the photocatalytic hydrogen evolution of graphitic carbon nitride. <i>Chemical Engineering Journal</i> , 2019 , 369, 263-271	14.7	34
60	Stabilizing the titanium-based metal organic frameworks in water by metal cations with empty or partially-filled d orbitals. <i>Journal of Colloid and Interface Science</i> , 2019 , 533, 9-12	9.3	7
59	Bi20TiO32 Nanoparticles Doped with Yb3+ and Er3+ as UV, Visible, and Near-Infrared Responsive Photocatalysts. <i>ACS Applied Nano Materials</i> , 2019 , 2, 5381-5388	5.6	11
58	Improving the photocatalytic hydrogen evolution of UiO-67 by incorporating Ce4+-coordinated bipyridinedicarboxylate ligands. <i>Science Bulletin</i> , 2019 , 64, 1502-1509	10.6	25
57	Enhanced electrocatalytic HER performance of non-noble metal nickel by introduction of divanadium trioxide. <i>Electrochimica Acta</i> , 2019 , 320, 134535	6.7	12
56	Enhanced selectivity and activity for electrocatalytic reduction of CO2 to CO on an anodized Zn/carbon/Ag electrode. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 16685-16689	13	17
55	Fe2O3 Film with Highly Photoactivity for Non-enzymatic Photoelectrochemical Detection of Glucose. <i>Electroanalysis</i> , 2019 , 31, 1809-1814	3	7
54	Graphitic carbon nitride tetragonal hollow prism with enhanced photocatalytic hydrogen evolution. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 28780-28788	6.7	10
53	ZnO nanorods modified with noble metal-free Co3O4 nanoparticles as a photocatalyst for efficient ethylene degradation under light irradiation. <i>Catalysis Science and Technology</i> , 2019 , 9, 6191-6198	5.5	11
52	Monomolecular VB2-doped MOFs for photocatalytic oxidation with enhanced stability, recyclability and selectivity. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 26934-26943	13	8

51	Efficient near-infrared photocatalysts based on NaYF4:Yb3+,Tm3+@NaYF4:Yb3+,Nd3+@TiO2 core@shell nanoparticles. <i>Chemical Engineering Journal</i> , 2019 , 361, 1089-1097	14.7	41
50	The synergistic effect of light irradiation and interface engineering of the Co(OH)2/MoS2 heterostructure to realize the efficient alkaline hydrogen evolution reaction. <i>Electrochimica Acta</i> , 2019 , 299, 618-625	6.7	31
49	Post-synthetic platinum complex modification of a triazine based metal organic frameworks for enhanced photocatalytic H2 evolution. <i>Journal of Solid State Chemistry</i> , 2019 , 271, 260-265	3.3	8
48	Perovskite photocatalyst CsPbBr3-xlx with a bandgap funnel structure for H2 evolution under visible light. <i>Applied Catalysis B: Environmental</i> , 2019 , 245, 522-527	21.8	82
47	Agn+ quantum dots obtained via in situ photodeposition method as photocatalytic CO2 reduction cocatalyst: Borrowing redox conversion between Ag+ and Ag0. <i>Applied Catalysis B: Environmental</i> , 2019 , 243, 381-385	21.8	20
46	Covalently-terminated germanane GeH and GeCH3 for hydrogen generation from catalytic hydrolysis of ammonia borane under visible light irradiation. <i>Catalysis Communications</i> , 2019 , 118, 46-50	3.2	20
45	A water-stable triazine-based metal-organic framework as an efficient adsorbent of Pb(II) ions. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 560, 315-322	5.1	25
44	Transformation of Cuprous Oxide into Hollow Copper Sulfide Cubes for Photocatalytic Hydrogen Generation. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 14072-14081	3.8	35
43	Synthesis of MoS2/Ni3S2 heterostructure for efficient electrocatalytic hydrogen evolution reaction through optimizing the sulfur sources selection. <i>Applied Surface Science</i> , 2018 , 459, 422-429	6.7	38
42	Fabrication of BiVO4 photoanode consisted of mesoporous nanoparticles with improved bulk charge separation efficiency. <i>Applied Catalysis B: Environmental</i> , 2018 , 238, 586-591	21.8	34
41	Photocorrosion of Cuprous Oxide in Hydrogen Production: Rationalising Self-Oxidation or Self-Reduction. <i>Angewandte Chemie</i> , 2018 , 130, 13801-13805	3.6	39
40	Photocorrosion of Cuprous Oxide in Hydrogen Production: Rationalising Self-Oxidation or Self-Reduction. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 13613-13617	16.4	112
39	Pulsed electrodeposition of CdS on ZnO nanorods for highly sensitive photoelectrochemical sensing of copper (II) ions. <i>Sustainable Materials and Technologies</i> , 2018 , 18, e00075	5.3	15
38	Co3O4 nanobelt arrays assembled with ultrathin nanosheets as highly efficient and stable electrocatalysts for the chlorine evolution reaction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 12718-127	723	25
37	Improving pore-filling in TiO2 nanorods and nanotubes scaffolds for perovskite solar cells via methylamine gas healing. <i>Solar Energy</i> , 2018 , 170, 541-548	6.8	6
36	Two transition metal phosphonate photocatalysts for H evolution and CO reduction. <i>Chemical Communications</i> , 2018 , 54, 7195-7198	5.8	19
35	Enhancing the Photocatalytic Hydrogen Evolution Activity of Mixed-Halide Perovskite CH3NH3PbBr3Ix Achieved by Bandgap Funneling of Charge Carriers. <i>ACS Catalysis</i> , 2018 , 8, 10349-103.	5 ¹ 3.1	106
34	Porous CoO nanosheets as a high-performance non-enzymatic sensor for glucose detection. Analytical and Bioanalytical Chemistry, 2018, 410, 7663-7670	4.4	13

33	Plasmon-Enhanced Solar Water Splitting on Metal-Semiconductor Photocatalysts. <i>Chemistry - A European Journal</i> , 2018 , 24, 18322-18333	4.8	43
32	Effects of Ag Incorporation on the Band Structures and Conductivity Types of (Cu1-xAgx)2ZnSnS4 Solid Solutions. <i>ChemPhotoChem</i> , 2018 , 2, 811-817	3.3	8
31	Platinum electrocatalysts with plasmonic nano-cores for photo-enhanced oxygen-reduction. <i>Nano Energy</i> , 2017 , 41, 233-242	17.1	28
30	Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO 2 Methanation. <i>Engineering</i> , 2017 , 3, 393-401	9.7	25
29	Epitaxial Growth of Au-Pt-Ni Nanorods for Direct High Selectivity H O Production. <i>Advanced Materials</i> , 2016 , 28, 9949-9955	24	140
28	Nanoplasmonic Photoluminescence Spectroscopy at Single-Particle Level: Sensing for Ethanol Oxidation. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2879-83	16.4	16
27	Nanoplasmonic Photoluminescence Spectroscopy at Single-Particle Level: Sensing for Ethanol Oxidation. <i>Angewandte Chemie</i> , 2016 , 128, 2929-2933	3.6	9
26	Nanorods: Epitaxial Growth of Au P t N i Nanorods for Direct High Selectivity H2O2 Production (Adv. Mater. 45/2016). <i>Advanced Materials</i> , 2016 , 28, 9872-9872	24	1
25	Plasmon-induced spatial electron transfer between single Au nanorods and ALD-coated TiO2: dependence on TiO2 thickness. <i>Chemical Communications</i> , 2015 , 51, 14373-6	5.8	16
24	Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd-Au nanorods studied at the single-particle level. <i>Journal of the American Chemical Society</i> , 2015 , 137, 948-57	16.4	279
23	CdS sensitized 3D hierarchical TiO2/ZnO heterostructure for efficient solar energy conversion. <i>Scientific Reports</i> , 2014 , 4, 5721	4.9	49
22	A Ti3+:TiO2/TiF3 hybrid with enhanced visible-light photocatalytic reactivity. <i>CrystEngComm</i> , 2014 , 16, 6538-6541	3.3	9
21	Preparation and characterisation of Ag3PO4/BiOBr composites with enhanced visible light driven photocatalytic performance. <i>Materials Technology</i> , 2014 , 29, 214-219	2.1	10
20	Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. <i>Journal of the American Chemical Society</i> , 2014 , 136, 6870-3	16.4	353
19			
	General route to ZnO nanorod arrays on conducting substrates via galvanic-cell-based approach. <i>Scientific Reports</i> , 2013 , 3, 2434	4.9	48
18		4·9 5.8	143
	Scientific Reports, 2013, 3, 2434 Metallic zinc- assisted synthesis of Ti3+ self-doped TiO2 with tunable phase composition and		·

LIST OF PUBLICATIONS

15	Topotactic transformation of single-crystalline TiOF2 nanocubes to ordered arranged 3D hierarchical TiO2 nanoboxes. <i>CrystEngComm</i> , 2012 , 14, 4578	3.3	48
14	Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity. <i>Chemical Communications</i> , 2012 , 48, 5733-5	5.8	262
13	Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. <i>Journal of Materials Chemistry</i> , 2011 , 21, 9079		494
12	Hierarchical TiO2 microspheres: synergetic effect of {001} and {101} facets for enhanced photocatalytic activity. <i>Chemistry - A European Journal</i> , 2011 , 17, 15032-8	4.8	170
11	One-step synthesis of AgBr microcrystals with different morphologies by ILs-assisted hydrothermal method. <i>CrystEngComm</i> , 2011 , 13, 1789	3.3	45
10	Facile synthesis of Zn-rich (GaN)1½(ZnO)x solid solutions using layered double hydroxides as precursors. <i>Journal of Materials Chemistry</i> , 2011 , 21, 4562		72
9	The synthesis of the near-spherical AgCl crystal for visible light photocatalytic applications. <i>Dalton Transactions</i> , 2011 , 40, 4104-10	4.3	99
8	Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity. <i>Journal of Colloid and Interface Science</i> , 2011 , 358, 68-72	9.3	60
7	Relationship between microstructure and photocatalytic properties of nanomaterials. <i>Zeitschrift Fa Kristallographie</i> , 2010 , 225,		7
6	Synthesis of highly efficient Ag@AgCl plasmonic photocatalysts with various structures. <i>Chemistry - A European Journal</i> , 2010 , 16, 538-44	4.8	366
5	Strategic synthesis of hierarchical TiO2 microspheres with enhanced photocatalytic activity. <i>Chemistry - A European Journal</i> , 2010 , 16, 11266-70	4.8	103
4	Growth of high transmittance vertical aligned ZnO nanorod arrays with polyvinyl alcohol by hydrothermal method. <i>Materials Letters</i> , 2009 , 63, 130-132	3.3	49
3	Highly efficient photocatalyst: TiO(2) microspheres produced from TiO(2) nanosheets with a high percentage of reactive {001} facets. <i>Chemistry - A European Journal</i> , 2009 , 15, 12576-9	4.8	138
2	Crystal Faces of Cu2O and Their Stabilities in Photocatalytic Reactions. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 14448-14453	3.8	322
1	An organometal halide perovskite supported Pt single-atom photocatalyst for H2 evolution. <i>Energy and Environmental Science</i> ,	35.4	14