Zhaoke Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7709707/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. Journal of Materials Chemistry, 2011, 21, 9079.	6.7	541
2	Single-Particle Study of Pt-Modified Au Nanorods for Plasmon-Enhanced Hydrogen Generation in Visible to Near-Infrared Region. Journal of the American Chemical Society, 2014, 136, 6870-6873.	13.7	426
3	Synthesis of Highly Efficient Ag@AgCl Plasmonic Photocatalysts with Various Structures. Chemistry - A European Journal, 2010, 16, 538-544.	3.3	394
4	Crystal Faces of Cu ₂ O and Their Stabilities in Photocatalytic Reactions. Journal of Physical Chemistry C, 2009, 113, 14448-14453.	3.1	361
5	Plasmon-Enhanced Formic Acid Dehydrogenation Using Anisotropic Pd–Au Nanorods Studied at the Single-Particle Level. Journal of the American Chemical Society, 2015, 137, 948-957.	13.7	336
6	Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity. Chemical Communications, 2012, 48, 5733.	4.1	285
7	Epitaxial Growth of Au–Pt–Ni Nanorods for Direct High Selectivity H ₂ O ₂ Production. Advanced Materials, 2016, 28, 9949-9955.	21.0	205
8	Cu ₂ O Nanoparticles with Both {100} and {111} Facets for Enhancing the Selectivity and Activity of CO ₂ Electroreduction to Ethylene. Advanced Science, 2020, 7, 1902820.	11.2	196
9	Hierarchical TiO ₂ Microspheres: Synergetic Effect of {001} and {101} Facets for Enhanced Photocatalytic Activity. Chemistry - A European Journal, 2011, 17, 15032-15038.	3.3	180
10	Photocorrosion of Cuprous Oxide in Hydrogen Production: Rationalising Selfâ€Oxidation or Selfâ€Reduction. Angewandte Chemie - International Edition, 2018, 57, 13613-13617.	13.8	177
11	Metallic zinc- assisted synthesis of Ti ³⁺ self-doped TiO ₂ with tunable phase composition and visible-light photocatalytic activity. Chemical Communications, 2013, 49, 868-870.	4.1	159
12	Enhancing the Photocatalytic Hydrogen Evolution Activity of Mixed-Halide Perovskite CH ₃ NH ₃ PbBr _{3–<i>x</i>} I _{<i>x</i>} Achieved by Bandgap Funneling of Charge Carriers. ACS Catalysis, 2018, 8, 10349-10357.	11.2	159
13	Highly Efficient Photocatalyst: TiO ₂ Microspheres Produced from TiO ₂ Nanosheets with a High Percentage of Reactive {001} Facets. Chemistry - A European Journal, 2009, 15, 12576-12579.	3.3	147
14	Perovskite photocatalyst CsPbBr3-xIx with a bandgap funnel structure for H2 evolution under visible light. Applied Catalysis B: Environmental, 2019, 245, 522-527.	20.2	127
15	Light-Promoted CO ₂ Conversion from Epoxides to Cyclic Carbonates at Ambient Conditions over a Bi-Based Metal–Organic Framework. ACS Catalysis, 2021, 11, 1988-1994.	11.2	117
16	The synthesis of the near-spherical AgCl crystal for visible light photocatalytic applications. Dalton Transactions, 2011, 40, 4104.	3.3	115
17	High-efficient electrocatalytic overall water splitting over vanadium doped hexagonal Ni0.2Mo0.8N. Applied Catalysis B: Environmental, 2020, 263, 118330.	20.2	111
18	TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde. Applied Catalysis B: Environmental, 2021, 286, 119885.	20.2	111

#	Article	IF	CITATIONS
19	Design and synthesis of porous M-ZnO/CeO2 microspheres as efficient plasmonic photocatalysts for nonpolar gaseous molecules oxidation: Insight into the role of oxygen vacancy defects and M=Ag, Au nanoparticles. Applied Catalysis B: Environmental, 2020, 260, 118151.	20.2	110
20	Strategic Synthesis of Hierarchical TiO ₂ Microspheres with Enhanced Photocatalytic Activity. Chemistry - A European Journal, 2010, 16, 11266-11270.	3.3	109
21	Crystal facets controlled synthesis of graphene@TiO ₂ nanocomposites by a one-pot hydrothermal process. CrystEngComm, 2012, 14, 1687-1692.	2.6	109
22	2D/2D heterostructure of ultrathin BiVO4/Ti3C2 nanosheets for photocatalytic overall Water splitting. Applied Catalysis B: Environmental, 2021, 285, 119855.	20.2	109
23	Leadâ€Free Halide Perovskite Cs ₃ Bi ₂ <i>_x</i> Sb _{2–2} <i>_x9 (<i>x</i>â‰^ 0.3) Possessing the Photocatalytic Activity for Hydrogen Evolution Comparable to that of (CH₃NH₃PbI₃. Advanced Materials, 2020, 32, e2001344.</i>	21.0	107
24	An organometal halide perovskite supported Pt single-atom photocatalyst for H ₂ evolution. Energy and Environmental Science, 2022, 15, 1271-1281.	30.8	97
25	Boosting the electrocatalytic HER performance of Ni3N-V2O3 via the interface coupling effect. Applied Catalysis B: Environmental, 2021, 283, 119590.	20.2	84
26	Selective photocatalytic conversion of alcohol to aldehydes by singlet oxygen over Bi-based metal-organic frameworks under UV–vis light irradiation. Applied Catalysis B: Environmental, 2019, 254, 463-470.	20.2	83
27	Photocatalytic Selective Oxidation of HMF Coupled with H ₂ Evolution on Flexible Ultrathin g-C ₃ N ₄ Nanosheets with Enhanced N–H Interaction. ACS Catalysis, 2022, 12, 1919-1929.	11.2	82
28	Co3(hexaiminotriphenylene)2: A conductive two-dimensional π–d conjugated metal–organic framework for highly efficient oxygen evolution reaction. Applied Catalysis B: Environmental, 2020, 278, 119295.	20.2	80
29	A pulse electrodeposited amorphous tunnel layer stabilises Cu ₂ 0 for efficient photoelectrochemical water splitting under visible-light irradiation. Journal of Materials Chemistry A, 2020, 8, 5638-5646.	10.3	78
30	Facile synthesis of Zn-rich (GaN)1â^'x(ZnO)x solid solutions using layered double hydroxides as precursors. Journal of Materials Chemistry, 2011, 21, 4562.	6.7	73
31	Highly efficient electrocatalytic hydrogen evolution coupled with upcycling of microplastics in seawater enabled via Ni3N/W5N4 janus nanostructures. Applied Catalysis B: Environmental, 2022, 307, 121198.	20.2	72
32	Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity. Journal of Colloid and Interface Science, 2011, 358, 68-72.	9.4	66
33	Accelerated electrocatalytic hydrogen evolution on non-noble metal containing trinickel nitride by introduction of vanadium nitride. Journal of Materials Chemistry A, 2019, 7, 5513-5521.	10.3	65
34	CdS sensitized 3D hierarchical TiO2/ZnO heterostructure for efficient solar energy conversion. Scientific Reports, 2014, 4, 5721.	3.3	64
35	Synthesis of MoS2/Ni3S2 heterostructure for efficient electrocatalytic hydrogen evolution reaction through optimizing the sulfur sources selection. Applied Surface Science, 2018, 459, 422-429.	6.1	60
36	General Route to ZnO Nanorod Arrays on Conducting Substrates via Galvanic-cell-based approach. Scientific Reports, 2013, 3, 2434.	3.3	57

#	Article	IF	CITATIONS
37	Plasmonâ€Enhanced Solar Water Splitting on Metalâ€Semiconductor Photocatalysts. Chemistry - A European Journal, 2018, 24, 18322-18333.	3.3	57
38	Enhancing the Photoelectrochemical Water Oxidation Reaction of BiVO ₄ Photoanode by Employing Carbon Spheres as Electron Reservoirs. ACS Catalysis, 2020, 10, 13031-13039.	11.2	57
39	Photocorrosion of Cuprous Oxide in Hydrogen Production: Rationalising Selfâ€Oxidation or Selfâ€Reduction. Angewandte Chemie, 2018, 130, 13801-13805.	2.0	55
40	Co ₃ O ₄ nanobelt arrays assembled with ultrathin nanosheets as highly efficient and stable electrocatalysts for the chlorine evolution reaction. Journal of Materials Chemistry A, 2018, 6, 12718-12723.	10.3	55
41	Effect of the intra- and inter-triazine N-vacancies on the photocatalytic hydrogen evolution of graphitic carbon nitride. Chemical Engineering Journal, 2019, 369, 263-271.	12.7	55
42	Two-dimensional π–d conjugated metal–organic framework Fe3(hexaiminotriphenylene)2 as a photo-Fenton like catalyst for highly efficient degradation of antibiotics. Applied Catalysis B: Environmental, 2021, 290, 120029.	20.2	55
43	Photoreforming of plastic waste poly (ethylene terephthalate) via in-situ derived CN-CNTs-NiMo hybrids. Applied Catalysis B: Environmental, 2022, 307, 121143.	20.2	55
44	Topotactic transformation of single-crystalline TiOF2 nanocubes to ordered arranged 3D hierarchical TiO2 nanoboxes. CrystEngComm, 2012, 14, 4578.	2.6	53
45	Efficient near-infrared photocatalysts based on NaYF4:Yb3+,Tm3+@NaYF4:Yb3+,Nd3+@TiO2 core@shell nanoparticles. Chemical Engineering Journal, 2019, 361, 1089-1097.	12.7	53
46	Stress-induced BiVO4 photoanode for enhanced photoelectrochemical performance. Applied Catalysis B: Environmental, 2022, 304, 121012.	20.2	52
47	Oxygenâ€Vacancyâ€Enhanced Singlet Oxygen Production for Selective Photocatalytic Oxidation. ChemSusChem, 2020, 13, 3488-3494.	6.8	51
48	One-step synthesis of Co-doped 1T-MoS2 nanosheets with efficient and stable HER activity in alkaline solutions. Materials Chemistry and Physics, 2020, 244, 122642.	4.0	51
49	Surface Fluorination Engineering of NiFe Prussian Blue Analogue Derivatives for Highly Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2021, 13, 5142-5152.	8.0	51
50	Growth of high transmittance vertical aligned ZnO nanorod arrays with polyvinyl alcohol by hydrothermal method. Materials Letters, 2009, 63, 130-132.	2.6	50
51	One-step synthesis of AgBr microcrystals with different morphologies by ILs-assisted hydrothermal method. CrystEngComm, 2011, 13, 1789.	2.6	50
52	Improving the photocatalytic hydrogen evolution of UiO-67 by incorporating Ce4+-coordinated bipyridinedicarboxylate ligands. Science Bulletin, 2019, 64, 1502-1509.	9.0	48
53	Ni3B as a highly efficient and selective catalyst for the electrosynthesis of hydrogen peroxide. Applied Catalysis B: Environmental, 2020, 279, 119371.	20.2	48
54	Probing the Mechanism of Plasmon-Enhanced Ammonia Borane Methanolysis on a CuAg Alloy at a Single-Particle Level. ACS Catalysis, 2021, 11, 10814-10823.	11.2	48

#	Article	IF	CITATIONS
55	Fabrication of BiVO4 photoanode consisted of mesoporous nanoparticles with improved bulk charge separation efficiency. Applied Catalysis B: Environmental, 2018, 238, 586-591.	20.2	47
56	Biasâ€Free Solar Water Splitting by Tetragonal Zircon BiVO ₄ Nanocrystal Photocathode and Monoclinic Scheelite BiVO ₄ Nanoporous Photoanode. Advanced Functional Materials, 2021, 31, 2008656.	14.9	45
57	In-situ growth of Ti3C2@MIL-NH2 composite for highly enhanced photocatalytic H2 evolution. Chemical Engineering Journal, 2021, 411, 128446.	12.7	45
58	Transformation of Cuprous Oxide into Hollow Copper Sulfide Cubes for Photocatalytic Hydrogen Generation. Journal of Physical Chemistry C, 2018, 122, 14072-14081.	3.1	43
59	Space-confined growth of lead-free halide perovskite Cs3Bi2Br9 in MCM-41 molecular sieve as an efficient photocatalyst for CO2 reduction at the gasâ^'solid condition under visible light. Applied Catalysis B: Environmental, 2022, 310, 121375.	20.2	43
60	Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO 2 Methanation. Engineering, 2017, 3, 393-401.	6.7	42
61	Improved photocatalytic CO2 and epoxides cycloaddition via the synergistic effect of Lewis acidity and charge separation over Zn modified UiO-bpydc. Applied Catalysis B: Environmental, 2022, 301, 120793.	20.2	42
62	Platinum electrocatalysts with plasmonic nano-cores for photo-enhanced oxygen-reduction. Nano Energy, 2017, 41, 233-242.	16.0	41
63	Plasmon-Mediated Nitrobenzene Hydrogenation with Formate as the Hydrogen Donor Studied at a Single-Particle Level. ACS Catalysis, 2021, 11, 3801-3809.	11.2	41
64	Plasmon-induced dehydrogenation of formic acid on Pd-dotted Ag@Au hexagonal nanoplates and single-particle study. Applied Catalysis B: Environmental, 2020, 277, 119226.	20.2	40
65	Synthesis of Synergistic Nitrogen-Doped NiMoO ₄ /Ni ₃ N Heterostructure for Implementation of an Efficient Alkaline Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 2440-2449.	5.1	39
66	The synergistic effect of light irradiation and interface engineering of the Co(OH)2/MoS2 heterostructure to realize the efficient alkaline hydrogen evolution reaction. Electrochimica Acta, 2019, 299, 618-625.	5.2	37
67	Improving the HER activity of Ni3FeN to convert the superior OER electrocatalyst to an efficient bifunctional electrocatalyst for overall water splitting by doping with molybdenum. Electrochimica Acta, 2020, 333, 135488.	5.2	37
68	Strain Adjustment Realizes the Photocatalytic Overall Water Splitting on Tetragonal Zircon BiVO ₄ . Advanced Science, 2022, 9, e2105299.	11.2	37
69	Electrodeposition of NiFe layered double hydroxide on Ni3S2 nanosheets for efficient electrocatalytic water oxidation. International Journal of Hydrogen Energy, 2020, 45, 8659-8666.	7.1	35
70	A water-stable triazine-based metal-organic framework as an efficient adsorbent of Pb(II) ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560, 315-322.	4.7	34
71	Substrate-dependent ALD of Cux on TiO2 and its performance in photocatalytic CO2 reduction. Chemical Engineering Journal, 2021, 405, 126654.	12.7	34
72	g-C3N4/ITO/Co-BiVO4 Z-scheme composite for solar overall water splitting. Chemical Engineering Journal, 2022, 433, 134476.	12.7	34

#	Article	IF	CITATIONS
73	Molten-salt assisted synthesis of Cu clusters modified TiO2 with oxygen vacancies for efficient photocatalytic reduction of CO2 to CO. Chemical Engineering Journal, 2022, 445, 136718.	12.7	34
74	Plasmon-Driven Modulation of Reaction Pathways of Individual Pt-Modified Au Nanorods. Nano Letters, 2020, 20, 3326-3330.	9.1	31
75	Boron containing metal–organic framework for highly selective photocatalytic production of H ₂ O ₂ by promoting two-electron O ₂ reduction. Materials Horizons, 2021, 8, 2842-2850.	12.2	31
76	Plasmon-Enhanced Water Activation for Hydrogen Evolution from Ammonia-Borane Studied at a Single-Particle Level. ACS Catalysis, 2022, 12, 3558-3565.	11.2	31
77	Two transition metal phosphonate photocatalysts for H ₂ evolution and CO ₂ reduction. Chemical Communications, 2018, 54, 7195-7198.	4.1	28
78	Research progress and surface/interfacial regulation methods for electrophotocatalytic hydrogen production from water splitting. Materials Today Energy, 2020, 18, 100524.	4.7	28
79	ZnO nanorod decorated by Au-Ag alloy with greatly increased activity for photocatalytic ethylene oxidation. Chinese Journal of Catalysis, 2020, 41, 1613-1621.	14.0	28
80	Covalently-terminated germanane GeH and GeCH3 for hydrogen generation from catalytic hydrolysis of ammonia borane under visible light irradiation. Catalysis Communications, 2019, 118, 46-50.	3.3	27
81	Ag ₂ ZnSnS ₄ /Mo-mesh photoelectrode prepared by electroplating for efficient photoelectrochemical hydrogen generation. Journal of Materials Chemistry A, 2019, 7, 1647-1657.	10.3	26
82	Agn+ quantum dots obtained via in situ photodeposition method as photocatalytic CO2 reduction cocatalyst: Borrowing redox conversion between Ag+ and AgO. Applied Catalysis B: Environmental, 2019, 243, 381-385.	20.2	26
83	Enhanced selectivity and activity for electrocatalytic reduction of CO ₂ to CO on an	10.3	25
84	Boosting H ₂ Production from a BiVO ₄ Photoelectrochemical Biomass Fuel Cell by the Construction of a Bridge for Charge and Energy Transfer. Advanced Materials, 2022, 34, e2201594.	21.0	24
85	Nanoplasmonic Photoluminescence Spectroscopy at Singleâ€Particle Level: Sensing for Ethanol Oxidation. Angewandte Chemie - International Edition, 2016, 55, 2879-2883.	13.8	23
86	Tailoring the composition and structure of Ni3S2 by introduction of Co towards high efficiency energy storage device. Chemical Engineering Journal, 2021, 403, 126285.	12.7	23
87	Nitrogen vacancy enhanced photocatalytic selective oxidation of benzyl alcohol in g-C3N4. International Journal of Hydrogen Energy, 2021, 46, 37782-37791.	7.1	23
88	Pulsed electrodeposition of CdS on ZnO nanorods for highly sensitive photoelectrochemical sensing of copper (II) ions. Sustainable Materials and Technologies, 2018, 18, e00075.	3.3	22
89	ZnO nanorods modified with noble metal-free Co ₃ O ₄ nanoparticles as a photocatalyst for efficient ethylene degradation under light irradiation. Catalysis Science and Technology, 2019, 9, 6191-6198.	4.1	22
90	The synergy of thermal exfoliation and phosphorus doping in g-C3N4 for improved photocatalytic H2 generation. International Journal of Hydrogen Energy, 2021, 46, 3595-3604.	7.1	22

#	Article	IF	CITATIONS
91	Oxygen vacancy enhancing CO2 electrochemical reduction to CO on Ce-doped ZnO catalysts. Surfaces and Interfaces, 2021, 23, 100923.	3.0	22
92	Morphology and defects design in g-C3N4 for efficient and simultaneous visible-light photocatalytic hydrogen production and selective oxidation of benzyl alcohol. International Journal of Hydrogen Energy, 2022, 47, 18738-18747.	7.1	22
93	Targeted Regulation of the Electronic States of Nickel Toward the Efficient Electrosynthesis of Benzonitrile and Hydrogen Production. ACS Applied Materials & Interfaces, 2021, 13, 56140-56150.	8.0	21
94	Polar Molecular Modification onto BiOBr to Regulate Molecular Oxygen Activation. Journal of Physical Chemistry C, 2019, 123, 15599-15605.	3.1	20
95	Facet-dependent CdS/Bi ₄ TaO ₈ Cl Z-scheme heterojunction for enhanced photocatalytic tetracycline hydrochloride degradation and the carrier separation mechanism study <i>via</i> single-particle spectroscopy. Inorganic Chemistry Frontiers, 2022, 9, 2252-2263.	6.0	20
96	Atomically dispersed cobalt-based species anchored on polythiophene as an efficient electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2021, 545, 148943.	6.1	19
97	Photo-induced photo-thermal synergy effect leading to efficient CO2 cycloaddition with epoxide over a Fe-based metal organic framework. Journal of Colloid and Interface Science, 2022, 625, 33-40.	9.4	19
98	Enhanced electrocatalytic HER performance of non-noble metal nickel by introduction of divanadium trioxide. Electrochimica Acta, 2019, 320, 134535.	5.2	18
99	Monomolecular VB ₂ -doped MOFs for photocatalytic oxidation with enhanced stability, recyclability and selectivity. Journal of Materials Chemistry A, 2019, 7, 26934-26943.	10.3	18
100	Molybdenum Nitride Electrocatalysts for Hydrogen Evolution More Efficient than Platinum/Carbon: Mo ₂ N/CeO ₂ @Nickel Foam. ACS Applied Materials & Interfaces, 2020, 12, 29153-29161.	8.0	18
101	Plasmon-induced spatial electron transfer between single Au nanorods and ALD-coated TiO ₂ : dependence on TiO ₂ thickness. Chemical Communications, 2015, 51, 14373-14376.	4.1	17
102	Porous Co3O4 nanosheets as a high-performance non-enzymatic sensor for glucose detection. Analytical and Bioanalytical Chemistry, 2018, 410, 7663-7670.	3.7	17
103	Enhanced photocatalytic hydrogen evolution ofÂCdWO4 through polar organic molecule modification. International Journal of Hydrogen Energy, 2019, 44, 4754-4763.	7.1	17
104	Photococatalytic anticancer performance of naked Ag/AgCl nanoparticles. Chemical Engineering Journal, 2022, 428, 131265.	12.7	17
105	In Situ Monitoring Charge Transfer on Topotactic Epitaxial Heterointerface for Tetracycline Degradation at the Single-Particle Level. ACS Catalysis, 2022, 12, 9114-9124.	11.2	17
106	Synergistic effect between boron containing metal-organic frameworks and light leading to enhanced CO2 cycloaddition with epoxides. Chemical Engineering Journal, 2022, 437, 135363.	12.7	16
107	Graphitic carbon nitride tetragonal hollow prism with enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 28780-28788.	7.1	15
108	Enhanced singlet oxygen production over a photocatalytic stable metal organic framework composed of porphyrin and Ag. Journal of Colloid and Interface Science, 2021, 602, 300-306.	9.4	15

#	Article	IF	CITATIONS
109	Promoting Electrocatalytic Reduction of CO ₂ to C ₂ H ₄ Production by Inhibiting C ₂ H ₅ OH Desorption from Cu ₂ O/C Composite. Small, 2022, 18, e2105212.	10.0	15
110	BiVO ₄ quadrangular nanoprisms with highly exposed {101} facets for selective photocatalytic oxidation of benzylamine. Journal of Materials Chemistry A, 2022, 10, 19699-19709.	10.3	15
111	Effects of Ag Incorporation on the Band Structures and Conductivity Types of (Cu _{1â€<i>x</i>} Ag _{<i>x</i>}) ₂ ZnSnS ₄ Solid Solutions. ChemPhotoChem, 2018, 2, 811-817.	3.0	14
112	Bi ₂₀ TiO ₃₂ Nanoparticles Doped with Yb ³⁺ and Er ³⁺ as UV, Visible, and Near-Infrared Responsive Photocatalysts. ACS Applied Nano Materials, 2019, 2, 5381-5388.	5.0	14
113	Enhanced photocatalytic activity towards H2 evolution over NiO via phosphonic acid surface modification with different functional groups. International Journal of Hydrogen Energy, 2019, 44, 16575-16581.	7.1	14
114	Post-synthetic platinum complex modification of a triazine based metal organic frameworks for enhanced photocatalytic H2 evolution. Journal of Solid State Chemistry, 2019, 271, 260-265.	2.9	14
115	In situ integration of Fe3N@Co4N@CoFe alloy nanoparticles as efficient and stable electrocatalyst for overall water splitting. Electrochimica Acta, 2021, 395, 139218.	5.2	14
116	αâ€Fe ₂ O ₃ Film with Highly Photoactivity for Nonâ€enzymatic Photoelectrochemical Detection of Glucose. Electroanalysis, 2019, 31, 1809-1814.	2.9	12
117	A biocompatible bismuth based metal-organic framework as efficient light-sensitive drug carrier. Journal of Colloid and Interface Science, 2022, 617, 578-584.	9.4	12
118	Preparation and characterisation of Ag3PO4/BiOBr composites with enhanced visible light driven photocatalytic performance. Materials Technology, 2014, 29, 214-219.	3.0	11
119	Synthesis of novel cubic Ni2Mo3N and its electronic structure regulation by vanadium doping towards high-efficient HER electrocatalyst. Electrochimica Acta, 2020, 337, 135689.	5.2	11
120	Enhanced stability and activity towards photocatalytic CO2 reduction via supercycle ALD of Cu and TiO2. Chemical Engineering Journal, 2022, 429, 132022.	12.7	11
121	Enhanced photocatalytic H2 production on hierarchical rutile TiO2 microspheres. RSC Advances, 2013, 3, 5156.	3.6	10
122	Stabilizing the titanium-based metal organic frameworks in water by metal cations with empty or partially-filled d orbitals. Journal of Colloid and Interface Science, 2019, 533, 9-12.	9.4	10
123	Host dependent electrocatalytic hydrogen evolution of Ni/TiO2 composites. Journal of Materials Chemistry A, 2021, 9, 6325-6334.	10.3	10
124	Zero-dimensional hydrazine iodobismuthate as a lead-free perovskite-like light absorber in a self-powered photodetector. Journal of Alloys and Compounds, 2022, 893, 162347.	5.5	10
125	Strain-assisted in-situ formed oxygen defective WO3 film for photothermal-synergistic reverse water gas shift reaction and single-particle study. Chemical Engineering Journal, 2022, 433, 134199.	12.7	10
126	Borate-modulated amorphous NiFeB nanocatalysts as highly active and stable electrocatalysts for oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 903, 163741.	5.5	10

#	Article	IF	CITATIONS
127	A Ti3+:TiO2/TiF3 hybrid with enhanced visible-light photocatalytic reactivity. CrystEngComm, 2014, 16, 6538-6541.	2.6	9
128	Nanoplasmonic Photoluminescence Spectroscopy at Singleâ€Particle Level: Sensing for Ethanol Oxidation. Angewandte Chemie, 2016, 128, 2929-2933.	2.0	9
129	Photothermal synergy for efficient dry reforming of CH ₄ by an Ag/AgBr/CsPbBr ₃ composite. Catalysis Science and Technology, 2022, 12, 1628-1636.	4.1	9
130	Relationship between microstructure and photocatalytic properties of nanomaterials. Zeitschrift Für Kristallographie, 2010, 225, .	1.1	8
131	Improving pore-filling in TiO2 nanorods and nanotubes scaffolds for perovskite solar cells via methylamine gas healing. Solar Energy, 2018, 170, 541-548.	6.1	8
132	Photostable Ag(I)-Based Metal–Organic Framework: Synthesis, Structure, and Photocatalytic Selective Oxidation Properties. Inorganic Chemistry, 2020, 59, 16127-16131.	4.0	8
133	Enhanced photocatalytic driven hydroxylation of phenylboric acid to phenol over pyrenetetrasulfonic acid intercalated ZnAl-LDHs. Journal of Colloid and Interface Science, 2022, 610, 455-462.	9.4	8
134	ZnGeP2: A near-infrared-activated photocatalyst for hydrogen production. Frontiers of Physics, 2020, 15, 1.	5.0	7
135	Tuning the Conduction Band Potential of Biâ€based Semiconductors Using a Combination of Organic Ligands. ChemSusChem, 2021, 14, 892-897.	6.8	7
136	Ag/AgCl as an efficient plasmonic photocatalyst for greenhouse gaseous methane oxidation. Journal of Environmental Chemical Engineering, 2021, 9, 106435.	6.7	7
137	In situ extract nucleate sites for the growth of free-standing carbon nitride films on various substrates. Catalysis Today, 2020, 340, 92-96.	4.4	6
138	A Bismuth-Based Metal–Organic Framework for Visible-Light-Driven Photocatalytic Decolorization of Dyes and Oxidation of Phenylboronic Acids. Inorganic Chemistry, 2022, 61, 11110-11117.	4.0	6
139	Design and synthesis of BiVO4@CuOx as a photo assisted Fenton-like catalyst for efficient degradation of tetracycline. Surfaces and Interfaces, 2021, 26, 101380.	3.0	5
140	miR-92 regulates the proliferation, migration, invasion and apoptosis of glioma cells by targeting neogenin. Open Medicine (Poland), 2020, 15, 283-291.	1.3	5
141	Molecular delineation of small supernumerary marker chromosomes using a single nucleotide polymorphism array. Molecular Cytogenetics, 2020, 13, 19.	0.9	4
142	Boosting hot electrons transfer via laser-induced atomic redistribution for plasmon-enhanced nitroreduction and single-particle study. Journal of Catalysis, 2022, 407, 115-125.	6.2	4
143	Photoelectrochemical Oxidation of Amines to Imines and Production of Hydrogen through Mo-Doped BiVO ₄ Photoanode. ACS Omega, 2022, 7, 12816-12824.	3.5	4
144	In Situ Preparation of CsPbBr ₃ @CsPb ₂ Br ₅ Composite Assisted with Water as a Highly Efficient and Stable Catalyst for Photothermal CO ₂ Hydrogenation. Chemistry - A European Journal, 2022, 28, .	3.3	4

#	Article	IF	CITATIONS
145	NiCoP–CeO ₂ composites for efficient electrochemical oxygen evolution. RSC Advances, 2022, 12, 13639-13644.	3.6	2
146	Growth of bulk BiOBr single crystals for the characterization of intrinsic semi-conductive properties and application in ultraviolet photodetectors. Journal of Materials Chemistry C, 2022, 10, 10330-10337.	5.5	2
147	Nanorods: Epitaxial Growth of Au-Pt-Ni Nanorods for Direct High Selectivity H2 O2 Production (Adv.) Tj ETQq1 1 ().784314 21.0	rgßT /Overlo
148	BiVO4 Ceramic Photoanode with Enhanced Photoelectrochemical Stability. Nanomaterials, 2021, 11, 2404.	4.1	1
149	Enhancing Electrocatalytic N2 Conversion to NH3 by MnO2 Ultralong Nanowires with Oxygen Vacancies. Journal of Photocatalysis, 2021, 2, 140-146.	0.4	0
150	In situ observation of photo-induced shortening of single Au nanorod for plasmon-enhanced formic acid dehydrogenation. , 2022, , 100014.		0