Chengxi Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7709502/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices. Nature Communications, 2021, 12, 1246.	12.8	274
2	Core/Shell Perovskite Nanocrystals: Synthesis of Highly Efficient and Environmentally Stable FAPbBr ₃ /CsPbBr ₃ for LED Applications. Advanced Functional Materials, 2020, 30, 1910582.	14.9	135
3	Core/Shell Metal Halide Perovskite Nanocrystals for Optoelectronic Applications. Advanced Functional Materials, 2021, 31, 2100438.	14.9	67
4	Improving Efficiency and Stability in Quasi-2D Perovskite Light-Emitting Diodes by a Multifunctional LiF Interlayer. ACS Applied Materials & Interfaces, 2020, 12, 43018-43023.	8.0	53
5	Metal Halide Perovskite Nanorods: Shape Matters. Advanced Materials, 2020, 32, e2002736.	21.0	48
6	Lattice Distortion in Mixed-Anion Lead Halide Perovskite Nanorods Leads to their High Fluorescence Anisotropy. , 2020, 2, 814-820.		33
7	Hybrid light emitting diodes based on stable, high brightness all-inorganic CsPbI ₃ perovskite nanocrystals and InGaN. Nanoscale, 2019, 11, 13450-13457.	5.6	29
8	High Efficient and Stable Solid Solar Cell: Based on FeS2 Nanocrystals and P3HT: PCBM. Energy Procedia, 2015, 75, 2181-2186.	1.8	26
9	High Efficient Planar-heterojunction Perovskite Solar Cell Based on Two-step Deposition Process. Energy Procedia, 2017, 105, 793-798.	1.8	18
10	Enhancement of the photoelectric performance in inverted bulk heterojunction solid solar cell with inorganic nanocrystals. Applied Energy, 2017, 185, 2217-2223.	10.1	17
11	Tenâ€Gramâ€6cale Synthesis of FAPbX ₃ Perovskite Nanocrystals by a Highâ€Power Roomâ€Temperature Ultrasonicâ€Assisted Strategy and Their Electroluminescence. Advanced Materials Technologies, 2020, 5, 1901089.	5.8	16
12	Boosting Efficiency of InP Quantum Dots-Based Light-Emitting Diodes by an In-Doped ZnO Electron Transport Layer. IEEE Electron Device Letters, 2021, 42, 1806-1809.	3.9	15
13	Defect-Assisted High Photoconductive UV–Visible Gain in Perovskite-Decorated Graphene Transistors. ACS Applied Electronic Materials, 2020, 2, 147-154.	4.3	13
14	Boosting the efficiency and stability of green InP quantum dot light emitting diodes by interface dipole modulation. Journal of Materials Chemistry C, 2022, 10, 8192-8198.	5.5	12
15	CsPb(Br/I)3 Perovskite Nanocrystals for Hybrid GaN-Based High-Bandwidth White Light-Emitting Diodes. ACS Applied Nano Materials, 2021, 4, 8383-8389.	5.0	10
16	Growth of perovskite nanocrystals in poly-tetra fluoroethylene based microsystem: on-line and off-line measurements. Nanotechnology, 2019, 30, 145602.	2.6	9
17	PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals. Beilstein Journal of Nanotechnology, 2017, 8, 2521-2529.	2.8	8
18	Halide perovskite based light-emitting diodes: a scaling up perspective. Journal of Materials Chemistry C, 2021, 9, 7532-7538.	5.5	7

CHENGXI ZHANG

#	Article	IF	CITATIONS
19	Lightâ€Induced Stark Effect and Reversible Photoluminescence Quenching in Inorganic Perovskite Nanocrystals. Advanced Optical Materials, 2021, 9, 2100104.	7.3	3
20	A high quality and quantity hybrid perovskite quantum dots (CsPbX3, X= Cl, Br and I) powders synthesis via ionic displacement. IOP Conference Series: Earth and Environmental Science, 2017, 100, 012057.	0.3	2
21	Strong Cube Texture Formation in Heavily Cold-Rolled Ni8W/Ni12W/Ni8W Composite Alloy Substrates Used in YBCO Coated Conductors. Metals and Materials International, 2021, 27, 1337-1345.	3.4	2
22	Metal Halide Perovskites: Metal Halide Perovskite Nanorods: Shape Matters (Adv. Mater. 46/2020). Advanced Materials, 2020, 32, 2070348.	21.0	1