List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7709269/publications.pdf Version: 2024-02-01

Μεμπι Βλμισλεί

#	Article	IF	CITATIONS
1	Flow and heat transfer characteristics of magnetic nanofluids: A review. Journal of Magnetism and Magnetic Materials, 2015, 374, 125-138.	1.0	256
2	Electronics cooling with nanofluids: A critical review. Energy Conversion and Management, 2018, 172, 438-456.	4.4	246
3	Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. Journal of Thermal Analysis and Calorimetry, 2014, 118, 287-294.	2.0	210
4	Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs. Journal of Molecular Liquids, 2019, 273, 88-98.	2.3	210
5	Application of Nanofluids in Thermal Performance Enhancement of Parabolic Trough Solar Collector: State-of-the-Art. Applied Sciences (Switzerland), 2019, 9, 463.	1.3	189
6	Recent research contributions concerning use of nanofluids in heat exchangers: A critical review. Applied Thermal Engineering, 2018, 133, 137-159.	3.0	186
7	Performance improvement of a single slope solar still by employing thermoelectric cooling channel and copper oxide nanofluid: An experimental study. Journal of Cleaner Production, 2019, 208, 1041-1052.	4.6	168
8	Graphene family nanofluids: A critical review and future research directions. Energy Conversion and Management, 2019, 196, 1222-1256.	4.4	153
9	Particle migration in nanofluids: A critical review. International Journal of Thermal Sciences, 2016, 109, 90-113.	2.6	148
10	Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings. Journal of Cleaner Production, 2020, 254, 120082.	4.6	147
11	Synthesized CuFe2O4/SiO2 nanocomposites added to water/EC: Evaluation of the thermophysical properties beside sensitivity analysis & EANN. International Journal of Heat and Mass Transfer, 2018, 127, 1169-1179.	2.5	135
12	Experimental and analytical investigations of productivity, energy and exergy efficiency of a single slope solar still enhanced with thermoelectric channel and nanofluid. Renewable Energy, 2019, 135, 729-744.	4.3	126
13	Application of a novel conical strip insert to improve the efficacy of water–Ag nanofluid for utilization in thermal systems: A two-phase simulation. Energy Conversion and Management, 2017, 151, 573-586.	4.4	125
14	Investigating the efficacy of magnetic nanofluid as a coolant in double-pipe heat exchanger in the presence of magnetic field. Energy Conversion and Management, 2013, 76, 1125-1133.	4.4	124
15	Thermal performance and second law characteristics of two new microchannel heat sinks operated with hybrid nanofluid containing graphene–silver nanoparticles. Energy Conversion and Management, 2018, 168, 357-370.	4.4	122
16	Application of a novel biological nanofluid in a liquid block heat sink for cooling of an electronic processor: Thermal performance and irreversibility considerations. Energy Conversion and Management, 2017, 149, 155-167.	4.4	115
17	CFD analysis of thermal and hydrodynamic characteristics of hybrid nanofluid in a new designed sinusoidal double-layered microchannel heat sink. Journal of Thermal Analysis and Calorimetry, 2018, 134, 2305-2315.	2.0	108
18	Effect of employing a new biological nanofluid containing functionalized graphene nanoplatelets on thermal and hydraulic characteristics of a spiral heat exchanger. Energy Conversion and Management, 2019, 180, 72-82.	4.4	108

#	Article	IF	CITATIONS
19	Experimental study for developing an accurate model to predict viscosity of CuO–ethylene glycol nanofluid using genetic algorithm based neural network. Powder Technology, 2018, 338, 383-390.	2.1	101
20	A review of numerical studies on solar collectors integrated with latent heat storage systems employing fins or nanoparticles. Renewable Energy, 2018, 118, 761-778.	4.3	100
21	Experimental investigation and modeling of thermal conductivity and viscosity for non-Newtonian hybrid nanofluid containing coated CNT/Fe 3 O 4 nanoparticles. Powder Technology, 2017, 318, 441-450.	2.1	97
22	Optimal arrangements of a heat sink partially filled with multilayered porous media employing hybrid nanofluid. Journal of Thermal Analysis and Calorimetry, 2019, 137, 1045-1058.	2.0	91
23	Rheological characteristics of MgO/oil nanolubricants: Experimental study and neural network modeling. International Communications in Heat and Mass Transfer, 2017, 86, 245-252.	2.9	89
24	Efficacy of a novel liquid block working with a nanofluid containing graphene nanoplatelets decorated with silver nanoparticles compared with conventional CPU coolers. Applied Thermal Engineering, 2017, 127, 1233-1245.	3.0	88
25	A novel application for energy efficiency improvement using nanofluid in shell and tube heat exchanger equipped with helical baffles. Energy, 2015, 93, 2229-2240.	4.5	85
26	Application of a hybrid nanofluid containing graphene nanoplatelet–platinum composite powder in a triple-tube heat exchanger equipped with inserted ribs. Applied Thermal Engineering, 2019, 149, 588-601.	3.0	85
27	Thermo-economic analysis and multi-objective optimization of absorption cooling system driven by various solar collectors. Energy Conversion and Management, 2018, 173, 715-727.	4.4	80
28	Artificial intelligence in the field of nanofluids: A review on applications and potential future directions. Powder Technology, 2019, 353, 276-301.	2.1	80
29	A Comprehensive Review on Different Numerical Approaches for Simulation in Nanofluids: Traditional and Novel Techniques. Journal of Dispersion Science and Technology, 2014, 35, 984-996.	1.3	77
30	Second law analysis of a hybrid nanofluid in tubes equipped with double twisted tape inserts. Powder Technology, 2019, 345, 692-703.	2.1	71
31	Application of conventional and hybrid nanofluids in different machining processes: A critical review. Advances in Colloid and Interface Science, 2020, 282, 102199.	7.0	70
32	Using neural network optimized by imperialist competition method and genetic algorithm to predict water productivity of a nanofluid-based solar still equipped with thermoelectric modules. Powder Technology, 2020, 366, 571-586.	2.1	70
33	CFD analysis of employing a novel ecofriendly nanofluid in a miniature pin fin heat sink for cooling of electronic components: Effect of different configurations. Advanced Powder Technology, 2019, 30, 2503-2516.	2.0	69
34	Assessment and optimization of hydrothermal characteristics for a non-Newtonian nanofluid flow within miniaturized concentric-tube heat exchanger considering designer's viewpoint. Applied Thermal Engineering, 2017, 123, 266-276.	3.0	68
35	CFD simulation of irreversibilities for laminar flow of a power-law nanofluid within a minichannel with chaotic perturbations: An innovative energy-efficient approach. Energy Conversion and Management, 2017, 144, 374-387.	4.4	67
36	Investigating exergy destruction and entropy generation for flow of a new nanofluid containing graphene–silver nanocomposite in a micro heat exchanger considering viscous dissipation. Powder Technology, 2018, 336, 298-310.	2.1	63

#	Article	IF	CITATIONS
37	Optimizing energy efficiency of a specific liquid block operated with nanofluids for utilization in electronics cooling: A decision-making based approach. Energy Conversion and Management, 2017, 154, 180-190.	4.4	61
38	Thermal and hydraulic characteristics of a minichannel heat exchanger operated with a non-Newtonian hybrid nanofluid. Journal of the Taiwan Institute of Chemical Engineers, 2018, 84, 149-161.	2.7	56
39	Heat transfer and entropy generation optimization for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe 3 O 4 nanoparticles in a concentric annulus. Journal of the Taiwan Institute of Chemical Engineers, 2018, 84, 28-40.	2.7	56
40	A comprehensive review on convective heat transfer of nanofluids in porous media: Energy-related and thermohydraulic characteristics. Applied Thermal Engineering, 2020, 178, 115487.	3.0	56
41	Irreversibility characteristics of a modified microchannel heat sink operated with nanofluid considering different shapes of nanoparticles. International Journal of Heat and Mass Transfer, 2020, 151, 119359.	2.5	55
42	Modeling of energy efficiency for a solar still fitted with thermoelectric modules by ANFIS and PSO-enhanced neural network: A nanofluid application. Powder Technology, 2021, 385, 185-198.	2.1	55
43	Numerical investigation of entropy generation to predict irreversibilities in nanofluid flow within a microchannel: Effects of Brownian diffusion, shear rate and viscosity gradient. Chemical Engineering Science, 2017, 172, 52-65.	1.9	52
44	Application of a novel hybrid nanofluid containing graphene–platinum nanoparticles in a chaotic twisted geometry for utilization in miniature devices: Thermal and energy efficiency considerations. International Journal of Mechanical Sciences, 2018, 138-139, 337-349.	3.6	52
45	Efficacy of a new graphene–platinum nanofluid in tubes fitted with single and twin twisted tapes regarding counter and co-swirling flows for efficient use of energy. International Journal of Mechanical Sciences, 2019, 150, 290-303.	3.6	52
46	Investigating non-Newtonian nanofluid flow in a narrow annulus based on second law of thermodynamics. Journal of Molecular Liquids, 2016, 219, 117-127.	2.3	51
47	A numerical study of heat transfer characteristics of CuO–water nanofluid by Euler–Lagrange approach. Journal of Thermal Analysis and Calorimetry, 2016, 123, 1591-1599.	2.0	50
48	Irreversibility analysis for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a minichannel heat exchanger. Applied Thermal Engineering, 2017, 125, 1083-1093.	3.0	50
49	A comprehensive analysis of energy and exergy characteristics for a natural gas city gate station considering seasonal variations. Energy, 2018, 155, 721-733.	4.5	50
50	Analyzing performance of a ribbed triple-tube heat exchanger operated with graphene nanoplatelets nanofluid based on entropy generation and exergy destruction. International Communications in Heat and Mass Transfer, 2019, 107, 55-67.	2.9	50
51	A two-phase simulation of convective heat transfer characteristics of water–Fe3O4 ferrofluid in a square channel under the effect of permanent magnet. Applied Thermal Engineering, 2019, 147, 991-997.	3.0	49
52	Thermal performance of Ag–water nanofluid in tube equipped with novel conical strip inserts using two-phase method: Geometry effects and particle migration considerations. Powder Technology, 2018, 338, 87-100.	2.1	47
53	A proper model to predict energy efficiency, exergy efficiency, and water productivity of a solar still via optimized neural network. Journal of Cleaner Production, 2020, 277, 123232.	4.6	47
54	Numerical study of flow and heat transfer of water-Al2O3 nanofluid inside a channel with an inner cylinder using Eulerian–Lagrangian approach. Journal of Thermal Analysis and Calorimetry, 2018, 132, 651-665.	2.0	46

#	Article	IF	CITATIONS
55	Efficacy of an eco-friendly nanofluid in a miniature heat exchanger regarding to arrangement of silver nanoparticles. Energy Conversion and Management, 2017, 144, 224-234.	4.4	45
56	Entropy generation in a heat exchanger working with a biological nanofluid considering heterogeneous particle distribution. Advanced Powder Technology, 2017, 28, 2380-2392.	2.0	44
57	Effect of line dipole magnetic field on entropy generation of Mn-Zn ferrite ferrofluid flowing through a minichannel using two-phase mixture model. Powder Technology, 2018, 340, 370-379.	2.1	44
58	Multi-attribute optimization of a novel micro liquid block working with green graphene nanofluid regarding preferences of decision maker. Applied Thermal Engineering, 2018, 143, 11-21.	3.0	44
59	Studying nanoparticle distribution in nanofluids considering the effective factors on particle migration and determination of phenomenological constants by Eulerian–Lagrangian simulation. Advanced Powder Technology, 2015, 26, 802-810.	2.0	42
60	Effect of particle migration on flow and heat transfer characteristics of magnetic nanoparticle suspensions. Journal of Molecular Liquids, 2015, 209, 531-538.	2.3	42
61	Effects of cobalt ferrite coated with silica nanocomposite on the thermal conductivity of an antifreeze: New nanofluid for refrigeration condensers. International Journal of Refrigeration, 2019, 102, 86-95.	1.8	42
62	Development of chaotic advection in laminar flow of a non-Newtonian nanofluid: A novel application for efficient use of energy. Applied Thermal Engineering, 2017, 124, 1213-1223.	3.0	41
63	Thermohydraulic performance analysis of a spiral heat exchanger operated with water–alumina nanofluid: Effects of geometry and adding nanoparticles. Energy Conversion and Management, 2018, 170, 62-72.	4.4	41
64	Using Neural Network for Determination of Viscosity in Water-TiO _{2} Nanofluid. Advances in Mechanical Engineering, 2012, 4, 742680.	0.8	41
65	Design of an innovative distributor to improve flow uniformity using cylindrical obstacles in header of a fuel cell. Energy, 2018, 152, 719-731.	4.5	40
66	Thermohydraulic characteristics of a micro plate heat exchanger operated with nanofluid considering different nanoparticle shapes. Applied Thermal Engineering, 2020, 179, 115621.	3.0	40
67	Effects of geometrical parameters on hydrothermal characteristics of shell-and-tube heat exchanger with helical baffles: Numerical investigation, modeling and optimization. Chemical Engineering Research and Design, 2015, 96, 43-53.	2.7	38
68	Thermal-hydraulic performance of a nanofluid in a shell-and-tube heat exchanger equipped with new trapezoidal inclined baffles: Nanoparticle shape effect. Powder Technology, 2022, 395, 348-359.	2.1	38
69	An empirical study to develop temperature-dependent models for thermal conductivity and viscosity of water-Fe 3 O 4 magnetic nanofluid. Materials Chemistry and Physics, 2016, 181, 333-343.	2.0	37
70	Effects of Geometry and Hydraulic Characteristics of Shallow Reservoirs on Sediment Entrapment. Water (Switzerland), 2018, 10, 1725.	1.2	37
71	Particle migration in nanofluids considering thermophoresis and its effect on convective heat transfer. Thermochimica Acta, 2013, 574, 47-54.	1.2	36
72	Optimization of irreversibility and thermal characteristics of a mini heat exchanger operated with a new hybrid nanofluid containing carbon nanotubes decorated with magnetic nanoparticles. Energy Conversion and Management, 2017, 150, 37-47.	4.4	36

#	Article	IF	CITATIONS
73	Predicting entropy generation of a hybrid nanofluid containing graphene–platinum nanoparticles through a microchannel liquid block using neural networks. International Communications in Heat and Mass Transfer, 2019, 109, 104351.	2.9	36
74	CFD simulation of nanofluid forced convection inside a three-dimensional annulus by two-phase mixture approach: Heat transfer and entropy generation analyses. International Journal of Mechanical Sciences, 2018, 146-147, 396-404.	3.6	35
75	Automatic cooling by means of thermomagnetic phenomenon of magnetic nanofluid in a toroidal loop. Applied Thermal Engineering, 2016, 107, 700-708.	3.0	34
76	Prediction of entropy generation for nanofluid flow through a triangular minichannel using neural network. Advanced Powder Technology, 2016, 27, 673-683.	2.0	34
77	Second law analysis for flow of a nanofluid containing graphene–platinum nanoparticles in a minichannel enhanced with chaotic twisted perturbations. Chemical Engineering Research and Design, 2018, 136, 230-241.	2.7	34
78	Forced convection of a temperature-sensitive ferrofluid in presence of magnetic field of electrical current-carrying wire: A two-phase approach. Advanced Powder Technology, 2018, 29, 2168-2175.	2.0	34
79	Performance Enhancement of Internal Combustion Engines through Vibration Control: State of the Art and Challenges. Applied Sciences (Switzerland), 2019, 9, 406.	1.3	34
80	A decision-making based method to optimize energy efficiency of ecofriendly nanofluid flow inside a new heat sink enhanced with flow distributor. Powder Technology, 2019, 342, 85-98.	2.1	33
81	Numerical evaluation on thermal–hydraulic characteristics of dilute heat-dissipating nanofluids flow in microchannels. Journal of Thermal Analysis and Calorimetry, 2019, 135, 671-683.	2.0	33
82	Optimal modification of heating, ventilation, and air conditioning system performances in residential buildings using the integration of metaheuristic optimization and neural computing. Energy and Buildings, 2020, 214, 109866.	3.1	33
83	Employing V-shaped ribs and nanofluid as two passive methods to improve second law characteristics of flow within a square channel: A two-phase approach. International Journal of Heat and Mass Transfer, 2020, 151, 119419.	2.5	33
84	Second law assessment of nanofluid flow in a channel fitted with conical ribs for utilization in solar thermal applications: Effect of nanoparticle shape. International Journal of Heat and Mass Transfer, 2020, 151, 119387.	2.5	32
85	Thermal Dispersion Model Compared with Euler-Lagrange Approach in Simulation of Convective Heat Transfer for Nanoparticle Suspensions. Journal of Dispersion Science and Technology, 2013, 34, 1778-1789.	1.3	31
86	Prediction of Nusselt Number and Friction Factor of Water-Al2O3Nanofluid Flow in Shell-and-Tube Heat Exchanger with Helical Baffles. Chemical Engineering Communications, 2015, 202, 260-268.	1,5	31
87	A two-phase simulation for analyzing thermohydraulic performance of Cu–water nanofluid within a square channel enhanced with 90° V-shaped ribs. International Journal of Heat and Mass Transfer, 2019, 145, 118612.	2.5	31
88	Employing elliptical pin-fins and nanofluid within a heat sink for cooling of electronic chips regarding energy efficiency perspective. Applied Thermal Engineering, 2021, 183, 116159.	3.0	31
89	Optimizing thermophysical properties of nanofluids using response surface methodology and particle swarm optimization in a non-dominated sorting genetic algorithm. Journal of the Taiwan Institute of Chemical Engineers, 2019, 103, 7-19.	2.7	30
90	Multi-criterion optimization of thermohydraulic performance of a mini pin fin heat sink operated with ecofriendly graphene nanoplatelets nanofluid considering geometrical characteristics. Journal of Molecular Liquids, 2019, 276, 653-666.	2.3	30

#	Article	IF	CITATIONS
91	Numerical Study and Optimization of Hydrothermal Characteristics of Mn–Zn Ferrite Nanofluid Within Annulus in the Presence of Magnetic Field. Journal of Superconductivity and Novel Magnetism, 2014, 27, 527-534.	0.8	29
92	Neural network modeling of thermo-hydraulic attributes and entropy generation of an ecofriendly nanofluid flow inside tubes equipped with novel rotary coaxial double-twisted tape. Powder Technology, 2020, 369, 162-175.	2.1	29
93	Heat transfer characteristics of impinging jet on a hot surface with constant heat flux using Cu2O–water nanofluid: An experimental study. International Communications in Heat and Mass Transfer, 2020, 112, 104509.	2.9	29
94	A critical review on pulsating flow in conventional fluids and nanofluids: Thermo-hydraulic characteristics. International Communications in Heat and Mass Transfer, 2021, 120, 104859.	2.9	29
95	Investigating heat transfer and entropy generation for mixed convection of CuO–water nanofluid in an inclined annulus. Journal of Molecular Liquids, 2017, 248, 36-47.	2.3	28
96	Thermo-hydraulic performance of a biological nanofluid containing graphene nanoplatelets within a tube enhanced with rotating twisted tape. Powder Technology, 2019, 355, 278-288.	2.1	28
97	A novel modification on preheating process of natural gas in pressure reduction stations to improve energy consumption, exergy destruction and CO2 emission: Preheating based on real demand. Energy, 2019, 173, 598-609.	4.5	28
98	Second law analysis of hybrid nanofluid flow in a microchannel heat sink integrated with ribs and secondary channels for utilization in miniature thermal devices. Chemical Engineering and Processing: Process Intensification, 2020, 153, 107963.	1.8	28
99	CFD simulation of combined electroosmotic-pressure driven micro-mixing in a microchannel equipped with triangular hurdle and zeta-potential heterogeneity. Chemical Engineering Science, 2019, 199, 463-477.	1.9	27
100	A CFD study on thermohydraulic characteristics of a nanofluid in a shell-and-tube heat exchanger fitted with new unilateral ladder type helical baffles. International Communications in Heat and Mass Transfer, 2021, 124, 105248.	2.9	27
101	Thermal and hydraulic characteristics of a hybrid nanofluid containing graphene sheets decorated with platinum through a new wavy cylindrical microchannel. Applied Thermal Engineering, 2020, 181, 115981.	3.0	26
102	Baking of Flat Bread in an Impingement Oven: An Experimental Study of Heat Transfer and Quality Aspects. Drying Technology, 2008, 26, 902-909.	1.7	25
103	Using nanofluid as a smart suspension in cooling channels with discrete heat sources. Journal of Thermal Analysis and Calorimetry, 2015, 119, 2079-2091.	2.0	25
104	CFD analysis of second law characteristics for flow of a hybrid biological nanofluid under rotary motion of a twisted tape: Exergy destruction and entropy generation analyses. Powder Technology, 2020, 372, 351-361.	2.1	25
105	Thermohydraulic assessment of a novel hybrid nanofluid containing cobalt oxide-decorated reduced graphene oxide nanocomposite in a microchannel heat sink with sinusoidal cavities and rectangular ribs. International Communications in Heat and Mass Transfer, 2022, 131, 105769.	2.9	25
106	Application of an ecofriendly nanofluid containing graphene nanoplatelets inside a novel spiral liquid block for cooling of electronic processors. Energy, 2021, 218, 119395.	4.5	24
107	Numerical simulation of nanofluid application in a C-shaped chaotic channel: A potential approach for energy efficiency improvement. Energy, 2014, 74, 863-870.	4.5	23
108	Prediction of hydrothermal behavior of a non-Newtonian nanofluid in a square channel by modeling of thermophysical properties using neural network. Journal of Thermal Analysis and Calorimetry, 2019, 135, 901-910.	2.0	23

#	Article	IF	CITATIONS
109	Entropy generation and exergy destruction for flow of a biologically functionalized graphene nanoplatelets nanofluid within tube enhanced with a novel rotary coaxial cross double-twisted tape. International Communications in Heat and Mass Transfer, 2020, 113, 104546.	2.9	23
110	Thermohydraulic performance of a nanofluid in a microchannel heat sink: Use of different microchannels for change in process intensity. Journal of the Taiwan Institute of Chemical Engineers, 2021, 125, 1-14.	2.7	23
111	Performance enhancement of a triple-tube heat exchanger through heat transfer intensification using novel crimped-spiral ribs and nanofluid: A two-phase analysis. Chemical Engineering and Processing: Process Intensification, 2021, 160, 108289.	1.8	22
112	A novel technique based on artificial intelligence for modeling the required temperature of a solar bread cooker equipped with concentrator through experimental data. Food and Bioproducts Processing, 2020, 123, 437-449.	1.8	21
113	A 3D numerical study on natural convection flow of nanofluid inside a cubical cavity equipped with porous fins using two-phase mixture model. Advanced Powder Technology, 2020, 31, 2480-2492.	2.0	21
114	Predicting heat transfer rate of a ribbed triple-tube heat exchanger working with nanofluid using neural network enhanced by advanced optimization algorithms. Powder Technology, 2021, 381, 459-476.	2.1	21
115	Efficacy of a novel graphene quantum dots nanofluid in a microchannel heat exchanger. Applied Thermal Engineering, 2021, 189, 116673.	3.0	21
116	Latest developments in nanofluid flow and heat transfer between parallel surfaces: A critical review. Advances in Colloid and Interface Science, 2021, 294, 102450.	7.0	21
117	A comprehensive analysis for second law attributes of spiral heat exchanger operating with nanofluid using two-phase mixture model: Exergy destruction minimization attitude. Advanced Powder Technology, 2021, 32, 211-224.	2.0	21
118	Baking of Flat Bread in an Impingement Oven: Modeling and Optimization. Drying Technology, 2009, 27, 103-112.	1.7	20
119	Natural Convection of Magnetic Nanofluid in a Cavity Under Non-uniform Magnetic Field: A Novel Application. Journal of Superconductivity and Novel Magnetism, 2014, 27, 587-594.	0.8	20
120	Prediction of convective heat transfer of Al2O3-water nanofluid considering particle migration using neural network. Engineering Computations, 2014, 31, 843-863.	0.7	20
121	Irreversibility characteristics of nanofluid flow under chaotic advection in a minichannel for different nanoparticle types. Journal of the Taiwan Institute of Chemical Engineers, 2018, 88, 25-36.	2.7	20
122	Comparative study of air and argon gases between cover and absorber coil in a cylindrical solar water heater: An experimental study. Renewable Energy, 2019, 135, 426-436.	4.3	20
123	Evaluation of tree-base data mining algorithms in land used/land cover mapping in a semi-arid environment through Landsat 8 OLI image; Shiraz, Iran. Geomatics, Natural Hazards and Risk, 2020, 11, 724-741.	2.0	20
124	Employing response surface methodology and neural network to accurately model thermal conductivity of TiO2–water nanofluid using experimental data. Chinese Journal of Physics, 2021, 70, 14-25.	2.0	20
125	Effect of water nano-droplet injection on steam ejector performance based on non-equilibrium spontaneous condensation: A droplet number study. Applied Thermal Engineering, 2021, 184, 116236.	3.0	19
126	Two-phase analysis of nanofluid flow within an innovative four-layer microchannel heat exchanger: Focusing on energy efficiency principle. Powder Technology, 2021, 383, 484-497.	2.1	19

#	Article	IF	CITATIONS
127	A second law analysis on flow of a nanofluid in a shell-and-tube heat exchanger equipped with new unilateral ladder type helical baffles. Powder Technology, 2021, 394, 234-249.	2.1	19
128	Neural network combined with nature-inspired algorithms to estimate overall heat transfer coefficient of a ribbed triple-tube heat exchanger operating with a hybrid nanofluid. Measurement: Journal of the International Measurement Confederation, 2021, 174, 108967.	2.5	18
129	Thermohydraulic performance and effectiveness of a mini shell and tube heat exchanger working with a nanofluid regarding effects of fins and nanoparticle shape. Advanced Powder Technology, 2021, 32, 4468-4480.	2.0	18
130	Development of a model for entropy generation of water-TiO 2 nanofluid flow considering nanoparticle migration within a minichannel. Chemometrics and Intelligent Laboratory Systems, 2016, 157, 16-28.	1.8	17
131	Impact of thermophoresis on nanoparticle distribution in nanofluids. Results in Physics, 2017, 7, 136-138.	2.0	17
132	Assessment of hydrothermal characteristics of Mn-Zn ferrite nanofluid as a functional material under quadrupole magnetic field. Powder Technology, 2017, 305, 174-182.	2.1	17
133	Heat transfer and flow characteristics of nanofluid in a narrow annulus: Numerical study, modelling and optimisation. Canadian Journal of Chemical Engineering, 2014, 92, 747-757.	0.9	16
134	Thermal analysis and electromagnetic characteristics of three single-sided flux pads for wireless power transfer. Journal of Cleaner Production, 2020, 243, 118561.	4.6	16
135	A comprehensive assessment of low-temperature preheating process in natural gas pressure reduction stations to better benefit from solar energy. Energy, 2020, 209, 118430.	4.5	16
136	Hydrothermal performance of single and hybrid nanofluids in Left-Right and Up-Down wavy microchannels using two-phase mixture approach. International Communications in Heat and Mass Transfer, 2021, 129, 105752.	2.9	16
137	Laminar Forced Convection of a Waterâ€īiO ₂ Nanofluid in Annuli Considering Mass Conservation for Particles. Chemical Engineering and Technology, 2013, 36, 2057-2064.	0.9	15
138	Experimental study on effect of employing twisted conical strip inserts on thermohydraulic performance considering geometrical parameters. International Journal of Thermal Sciences, 2020, 149, 106178.	2.6	15
139	Irreversibility features of a shell-and-tube heat exchanger fitted with novel trapezoidal oblique baffles: Application of a nanofluid with different particle shapes. International Communications in Heat and Mass Transfer, 2021, 126, 105352.	2.9	15
140	Energy, exergy, and hydrodynamic performance of a spiral heat exchanger: Process intensification by a nanofluid containing different particle shapes. Chemical Engineering and Processing: Process Intensification, 2021, 166, 108481.	1.8	15
141	Second law performance of a novel four-layer microchannel heat exchanger operating with nanofluid through a two-phase simulation. Powder Technology, 2022, 396, 673-688.	2.1	15
142	Irreversibility characteristics of a mini shell and tube heat exchanger operating with a nanofluid considering effects of fins and nanoparticle shape. Powder Technology, 2022, 398, 117117.	2.1	15
143	A combined multi-criterion optimization to determine optimum geometrical parameters for flow of an ecofriendly graphene-based nanofluid inside tube enhanced with twisted conical strip inserts. Powder Technology, 2021, 377, 336-349.	2.1	14
144	Two-phase simulation of irreversibilities for Ag–water nanofluid flow inside an elliptical pin-fin heat sink: Entropy generation and exergy considerations. Powder Technology, 2022, 409, 117723.	2.1	14

#	Article	IF	CITATIONS
145	A novel thermal dispersion model to improve prediction of nanofluid convective heat transfer. Advanced Powder Technology, 2014, 25, 1772-1779.	2.0	13
146	Thermal performance of a new nanofluid containing biologically functionalized graphene nanoplatelets inside tubes equipped with rotating coaxial double-twisted tapes. International Communications in Heat and Mass Transfer, 2019, 108, 104305.	2.9	12
147	Numerical study and optimization of thermohydraulic characteristics of a graphene–platinum nanofluid in finned annulus using genetic algorithm combined with decision-making technique. Engineering With Computers, 2021, 37, 2473-2491.	3.5	12
148	Spatial assessment of landslide risk using two novel integrations of neuro-fuzzy system and metaheuristic approaches; Ardabil Province, Iran. Geomatics, Natural Hazards and Risk, 2020, 11, 230-258.	2.0	12
149	Accuracy enhancement of thermal dispersion model in prediction of convective heat transfer for nanofluids considering the effects of particle migration. Korean Journal of Chemical Engineering, 2013, 30, 1552-1558.	1.2	11
150	Experimental Study of Nanofluid Convective Heat Transfer for Implementation of Dispersion Model Considering Non-Uniform Particle Distribution. Experimental Heat Transfer, 2014, 27, 452-471.	2.3	11
151	Numerical investigation and optimization of flow and thermal characteristics of nanofluid within a chaotic geometry. Advanced Powder Technology, 2016, 27, 184-192.	2.0	11
152	Experimental study of an absorber coil in spherical solar collector with practical dimensions at different flow rates. Renewable Energy, 2021, 180, 1248-1259.	4.3	11
153	Employing a novel crimped-spiral rib inside a triple-tube heat exchanger working with a nanofluid for solar thermal applications: Irreversibility characteristics. Sustainable Energy Technologies and Assessments, 2022, 52, 102080.	1.7	11
154	A two-phase simulation for ferrofluid flow between two parallel plates under localized magnetic field by applying Lagrangian approach for nanoparticles. European Journal of Mechanics, B/Fluids, 2019, 74, 252-259.	1.2	10
155	Thermohydraulic performance optimization of cooling system of an electric arc furnace operated with nanofluid: A CFD study. Journal of Cleaner Production, 2021, 310, 127451.	4.6	10
156	Effects of Various Forces on Particle Distribution and Thermal Features of Suspensions Containing Alumina Nanoparticles. Journal of Dispersion Science and Technology, 2014, 35, 859-867.	1.3	9
157	Numerical Investigation of Nanofluid Forced Convection in Channels with Discrete Heat Sources. Journal of Applied Mathematics, 2012, 2012, 1-18.	0.4	7
158	Experimental investigation of hydrothermal characteristics for flow within a circular tube equipped with twisted conical strip inserts under different alignments. Journal of the Taiwan Institute of Chemical Engineers, 2020, 114, 24-35.	2.7	7
159	A two-phase simulation for investigating natural convection characteristics of nanofluid inside a perturbed enclosure filled with porous medium. Engineering With Computers, 2020, , 1.	3.5	6
160	A computational model for predicting filtration performance of 3D-magnetic filters under different channel geometries, particle sizes and flow conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125844.	2.3	6
161	A CFD Study of [C2mim][CH3SO3]/Al2O3 Ionanofluid Flow and Heat Transfer in Grooved Tubes. International Journal of Thermophysics, 2021, 42, 1.	1.0	6
162	Impact of nanoparticle shape on thermohydraulic performance of a nanofluid in an enhanced microchannel heat sink for utilization in cooling of electronic components. Chinese Journal of Chemical Engineering, 2020, , .	1.7	6

#	Article	IF	CITATIONS
163	Modeling of irreversibility factors for nanofluid flow in different channels regarding nanoparticle arrangement. Journal of Thermal Analysis and Calorimetry, 2019, 137, 607-622.	2.0	5
164	Using spiral channels for intensification of cooling process in an innovative liquid block operated with a biologically produced nanofluid: First and second law analyses. Chemical Engineering and Processing: Process Intensification, 2021, 162, 108326.	1.8	5
165	Investigating the Effect of Line Dipole Magnetic Field on Hydrothermal Characteristics of a Temperature-Sensitive Magnetic Nanofluid Using Two-Phase Simulation. Nanoscale Research Letters, 2016, 11, 443.	3.1	4
166	Two-phase simulation of the generated entropy for the nanofluid flow inside a ribbed passage for cooling of a PV cell. Thermal Science and Engineering Progress, 2022, , 101353.	1.3	4
167	Studying flow and heat transfer characteristics of magnetic nanofluid under the effect of magnetic field using Euler- Lagrange approach. International Journal of Applied Electromagnetics and Mechanics, 2014, 46, 555-567.	0.3	2
168	Second Law Analysis of Nanofluid Flow within a Circular Minichannel Considering Nanoparticle Migration. Entropy, 2016, 18, 378.	1.1	2
169	Preliminary feasibility study on using a nano-composition in enhanced oil recovery process: neural network modeling. Neural Computing and Applications, 2021, 33, 10111-10127.	3.2	0