## Janet F Partridge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7708953/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 2001, 410, 120-124.                                                                                                    | 27.8 | 2,535     |
| 2  | Characterization of Dicer-deficient murine embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12135-12140.                                           | 7.1  | 742       |
| 3  | Requirement of Heterochromatin for Cohesion at Centromeres. Science, 2001, 294, 2539-2542.                                                                                                                          | 12.6 | 583       |
| 4  | The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes.<br>Nature Communications, 2014, 5, 3630.                                                                        | 12.8 | 342       |
| 5  | A new component of the transcription factor DRTF1/E2F. Nature, 1993, 362, 83-87.                                                                                                                                    | 27.8 | 265       |
| 6  | Dimerisation of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis. Current Biology, 2000, 10, 517-525.                                                               | 3.9  | 228       |
| 7  | Distinct protein interaction domains and protein spreading in a complex centromere. Genes and Development, 2000, 14, 783-791.                                                                                       | 5.9  | 219       |
| 8  | cis-Acting DNA from Fission Yeast Centromeres Mediates Histone H3 Methylation and Recruitment of<br>Silencing Factors and Cohesin to an Ectopic Site. Current Biology, 2002, 12, 1652-1660.                         | 3.9  | 165       |
| 9  | Centromere Silencing and Function in Fission Yeast Is Governed by the Amino Terminus of Histone H3.<br>Current Biology, 2003, 13, 1748-1757.                                                                        | 3.9  | 123       |
| 10 | Histone H3 Mutations: An Updated View of Their Role in Chromatin Deregulation and Cancer. Cancers, 2019, 11, 660.                                                                                                   | 3.7  | 105       |
| 11 | High-Affinity Binding of Chp1 Chromodomain to K9 Methylated Histone H3 Is Required to Establish<br>Centromeric Heterochromatin. Molecular Cell, 2009, 34, 36-46.                                                    | 9.7  | 103       |
| 12 | RNA Interference (RNAi)-Dependent and RNAi-Independent Association of the Chp1 Chromodomain<br>Protein with Distinct Heterochromatic Loci in Fission Yeast. Molecular and Cellular Biology, 2005, 25,<br>2331-2346. | 2.3  | 80        |
| 13 | Plasticity of Fission Yeast CENP-A Chromatin Driven by Relative Levels of Histone H3 and H4. PLoS<br>Genetics, 2007, 3, e121.                                                                                       | 3.5  | 78        |
| 14 | Histone H3 mutations—a special role for H3.3 in tumorigenesis?. Chromosoma, 2015, 124, 177-189.                                                                                                                     | 2.2  | 77        |
| 15 | Functional Separation of the Requirements for Establishment and Maintenance of Centromeric<br>Heterochromatin. Molecular Cell, 2007, 26, 593-602.                                                                   | 9.7  | 74        |
| 16 | Sir2 is required for Clr4 to initiate centromeric heterochromatin assembly in fission yeast. EMBO<br>Journal, 2013, 32, 2321-2335.                                                                                  | 7.8  | 68        |
| 17 | Cancer-Associated Mutants of RNA Helicase DDX3X Are Defective in RNA-Stimulated ATP Hydrolysis.<br>Journal of Molecular Biology, 2015, 427, 1779-1796.                                                              | 4.2  | 66        |
| 18 | Cell Cycle-dependent Transcription of CLN1 Involves Swi4 Binding to MCB-like Elements. Journal of Biological Chemistry, 1997, 272, 9071-9077.                                                                       | 3.4  | 52        |

Janet F Partridge

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | SHREC Silences Heterochromatin via Distinct Remodeling and Deacetylation Modules. Molecular Cell, 2016, 62, 207-221.                                                                                                                                         | 9.7  | 45        |
| 20 | Chp1-Tas3 Interaction Is Required To Recruit RITS to Fission Yeast Centromeres and for Maintenance of Centromeric Heterochromatin. Molecular and Cellular Biology, 2008, 28, 2154-2166.                                                                      | 2.3  | 42        |
| 21 | The Chp1–Tas3 core is a multifunctional platform critical for gene silencing by RITS. Nature<br>Structural and Molecular Biology, 2011, 18, 1351-1357.                                                                                                       | 8.2  | 38        |
| 22 | RITS—connecting transcription, RNA interference, and heterochromatin assembly in fission yeast.<br>Wiley Interdisciplinary Reviews RNA, 2011, 2, 632-646.                                                                                                    | 6.4  | 38        |
| 23 | Histone H3C34R mutation causes replication stress, homologous recombination defects and genomic instability in S. pombe. ELife, 2017, 6, .                                                                                                                   | 6.0  | 36        |
| 24 | Schizosaccharomyces pombe Git7p, a Member of the Saccharomyces cerevisiae Sgt1p Family, Is Required for Glucose and Cyclic AMP Signaling, Cell Wall Integrity, and Septation. Eukaryotic Cell, 2002, 1, 558-567.                                             | 3.4  | 35        |
| 25 | The Mi-2 Homolog Mit1 Actively Positions Nucleosomes within Heterochromatin To Suppress<br>Transcription. Molecular and Cellular Biology, 2014, 34, 2046-2061.                                                                                               | 2.3  | 29        |
| 26 | H3K9me-Independent Gene Silencing in Fission Yeast Heterochromatin by Clr5 and Histone Deacetylases.<br>PLoS Genetics, 2011, 7, e1001268.                                                                                                                    | 3.5  | 28        |
| 27 | Centromeric heterochromatin assembly in fission yeast—balancing transcription, RNA interference<br>and chromatin modification. Chromosome Research, 2012, 20, 521-534.                                                                                       | 2.2  | 28        |
| 28 | Genetic characterisation of hda1+, a putative fission yeast histone deacetylase gene. Nucleic Acids<br>Research, 1998, 26, 3247-3254.                                                                                                                        | 14.5 | 25        |
| 29 | Continuous Requirement for the Clr4 Complex But Not RNAi for Centromeric Heterochromatin<br>Assembly in Fission Yeast Harboring a Disrupted RITS Complex. PLoS Genetics, 2010, 6, e1001174.                                                                  | 3.5  | 24        |
| 30 | Hotspots for Vitamin–Steroid–Thyroid Hormone Response Elements Within Switch Regions of<br>Immunoglobulin Heavy Chain Loci Predict a Direct Influence of Vitamins and Hormones on B Cell Class<br>Switch Recombination. Viral Immunology, 2016, 29, 132-136. | 1.3  | 23        |
| 31 | Abo1, a conserved bromodomain <scp>AAA</scp> ― <scp>ATP</scp> ase, maintains global nucleosome occupancy and organisation. EMBO Reports, 2016, 17, 79-93.                                                                                                    | 4.5  | 22        |
| 32 | Surprising phenotypic diversity of cancer-associated mutations of Gly 34 in the histone H3 tail. ELife, 2021, 10, .                                                                                                                                          | 6.0  | 22        |
| 33 | Vitamin A differentially regulates cytokine expression in respiratory epithelial and macrophage cell<br>lines. Cytokine, 2017, 91, 1-5.                                                                                                                      | 3.2  | 21        |
| 34 | NSD1 mediates antagonism between SWI/SNF and polycomb complexes and is required for transcriptional activation upon EZH2 inhibition. Molecular Cell, 2022, 82, 2472-2489.e8.                                                                                 | 9.7  | 18        |
| 35 | Cdk1 phosphorylation of the kinetochore protein Nsk1 prevents error-prone chromosome segregation. Journal of Cell Biology, 2011, 195, 583-593.                                                                                                               | 5.2  | 12        |
| 36 | Centromeric chromatin in fission yeast. Frontiers in Bioscience - Landmark, 2008, Volume, 3896.                                                                                                                                                              | 3.0  | 8         |

JANET F PARTRIDGE

| #  | Article                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | DNA Damage Response Checkpoint Activation Drives KP1019 Dependent Pre-Anaphase Cell Cycle Delay in<br>S. cerevisiae. PLoS ONE, 2015, 10, e0138085.       | 2.5 | 8         |
| 38 | Subtelomeric Chromatin in the Fission Yeast S. pombe. Microorganisms, 2021, 9, 1977.                                                                     | 3.6 | 2         |
| 39 | Spreading the Silence. Developmental Cell, 2009, 16, 630-632.                                                                                            | 7.0 | 1         |
| 40 | Should I Stay or Should I Go? Chromodomain Proteins Seal the Fate of Heterochromatic Transcripts<br>in Fission Yeast. Molecular Cell, 2012, 47, 153-155. | 9.7 | 1         |