
Daniel S Marigold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/770866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Learning from the Physical Consequences of Our Actions Improves Motor Memory. ENeuro, 2022, 9, ENEURO.0459-21.2022.	0.9	5
2	How aging affects visuomotor adaptation and retention in a precision walking paradigm. Scientific Reports, 2021, 11, 789.	1.6	5
3	The potential of noisy galvanic vestibular stimulation for optimizing and assisting human performance. Neuropsychologia, 2021, 152, 107751.	0.7	9
4	Cortical Effects of Noisy Galvanic Vestibular Stimulation Using Functional Near-Infrared Spectroscopy. Sensors, 2021, 21, 1476.	2.1	4
5	Motives driving gaze and walking decisions. Current Biology, 2021, 31, 1632-1642.e4.	1.8	16
6	Savings in sensorimotor learning during balance-challenged walking but not reaching. Journal of Neurophysiology, 2021, 125, 2384-2396.	0.9	5
7	Challenging balance during sensorimotor adaptation increases generalization. Journal of Neurophysiology, 2020, 123, 1342-1354.	0.9	13
8	Age-related changes in gaze sampling strategies during obstacle navigation. Gait and Posture, 2020, 76, 252-258.	0.6	9
9	Subthreshold stochastic vestibular stimulation affects balance-challenged standing and walking. PLoS ONE, 2020, 15, e0231334.	1.1	9
10	Mobility-Related Gaze Training in Individuals With Glaucoma: A Proof-of-Concept Study. Translational Vision Science and Technology, 2019, 8, 23.	1.1	5
11	Motor cost affects the decision of when to shift gaze for guiding movement. Journal of Neurophysiology, 2019, 122, 378-388.	0.9	18
12	No effect of triple-pulse TMS medial to intraparietal sulcus on online correction for target perturbations during goal-directed hand and foot reaches. PLoS ONE, 2019, 14, e0223986.	1.1	7
13	Working Memory: Why You Didn't Trip on that Rock. Current Biology, 2019, 29, R25-R27.	1.8	1
14	Glaucoma-Related Differences in Gaze Behavior When Negotiating Obstacles. Translational Vision Science and Technology, 2018, 7, 10.	1.1	7
15	Adaptive Gaze Strategies to Reduce Environmental Uncertainty During a Sequential Visuomotor Behaviour. Scientific Reports, 2018, 8, 14112.	1.6	25
16	Coordination of Gaze Behavior and Foot Placement During Walking in Persons With Glaucoma. Journal of Glaucoma, 2018, 27, 55-63.	0.8	11
17	Long-term retention and reconsolidation of a visuomotor memory. Neurobiology of Learning and Memory, 2018, 155, 313-321.	1.0	18
18	Consolidation of visuomotor adaptation memory with consistent and noisy environments. Journal of Neurophysiology, 2017, 117, 316-326.	0.9	14

DANIEL S MARIGOLD

#	Article	IF	CITATIONS
19	Cutaneous reflex modulation during obstacle avoidance under conditions of normal and degraded visual input. Experimental Brain Research, 2017, 235, 2483-2493.	0.7	3
20	Foot placement relies on state estimation during visually guided walking. Journal of Neurophysiology, 2017, 117, 480-491.	0.9	31
21	Short-Term Motor Learning and Retention During Visually Guided Walking in Persons With Multiple Sclerosis. Neurorehabilitation and Neural Repair, 2017, 31, 648-656.	1.4	11
22	Posterior parietal cortex estimates the relationship between object and body location during locomotion. ELife, 2017, 6, .	2.8	42
23	Does uncertainty about the terrain explain gaze behavior during visually guided walking?. Journal of Vision, 2017, 17, 709.	0.1	1
24	Glaucoma-related changes in gaze behavior affect mobility but are modifiable. Journal of Vision, 2017, 17, 712.	0.1	0
25	Taking the next step: cortical contributions to the control of locomotion. Current Opinion in Neurobiology, 2015, 33, 25-33.	2.0	166
26	Modification of cutaneous reflexes during visually guided walking. Journal of Neurophysiology, 2014, 111, 379-393.	0.9	4
27	Effects of Age-Related Macular Degeneration and Ambient Light on Curb Negotiation. Optometry and Vision Science, 2014, 91, 975-989.	0.6	20
28	Maintaining standing balance by handrail grasping. Gait and Posture, 2014, 39, 258-264.	0.6	20
29	Changes in task parameters during walking prism adaptation influence the subsequent generalization pattern. Journal of Neurophysiology, 2013, 109, 2495-2504.	0.9	13
30	The contribution of vision, proprioception, and efference copy in storing a neural representation for guiding trail leg trajectory over an obstacle. Journal of Neurophysiology, 2012, 107, 2283-2293.	0.9	42
31	Prism adaptation and generalization during visually guided locomotor tasks. Journal of Neurophysiology, 2011, 106, 860-871.	0.9	32
32	Contribution of cells in the posterior parietal cortex to the planning of visually guided locomotion in the cat: effects of temporary visual interruption. Journal of Neurophysiology, 2011, 105, 2457-2470.	0.9	52
33	Motor planning of locomotor adaptations on the basis of vision. Progress in Brain Research, 2011, 188, 83-100.	0.9	32
34	Whole-Body Responses: Neural Control and Implications for Rehabilitation and Fall Prevention. Neuroscientist, 2009, 15, 36-46.	2.6	57
35	Visual information from the lower visual field is important for walking across multi-surface terrain. Experimental Brain Research, 2008, 188, 23-31.	0.7	131
36	Age-related changes in gait for multi-surface terrain. Gait and Posture, 2008, 27, 689-696.	0.6	121

DANIEL S MARIGOLD

#	Article	IF	CITATIONS
37	Role of Peripheral Visual Cues in Online Visual Guidance of Locomotion. Exercise and Sport Sciences Reviews, 2008, 36, 145-151.	1.6	91
38	Muscle Reflexes and Synergies Triggered by an Unexpected Support Surface Height During Walking. Journal of Neurophysiology, 2007, 97, 3639-3650.	0.9	95
39	The relationship of asymmetric weight-bearing with postural sway and visual reliance in stroke. Gait and Posture, 2006, 23, 249-255.	0.6	161
40	Altered timing of postural reflexes contributes to falling in persons with chronic stroke. Experimental Brain Research, 2006, 171, 459-468.	0.7	83
41	Keep looking ahead? Re-direction of visual fixation does not always occur during an unpredictable obstacle avoidance task. Experimental Brain Research, 2006, 176, 32-42.	0.7	84
42	Relationship of Balance and Mobility to Fall Incidence in People With Chronic Stroke. Physical Therapy, 2005, 85, 150-158.	1.1	253
43	Exercise Leads to Faster Postural Reflexes, Improved Balance and Mobility, and Fewer Falls in Older Persons with Chronic Stroke. Journal of the American Geriatrics Society, 2005, 53, 416-423.	1.3	204
44	Adapting Locomotion to Different Surface Compliances: Neuromuscular Responses and Changes in Movement Dynamics. Journal of Neurophysiology, 2005, 94, 1733-1750.	0.9	99
45	Contribution of Muscle Strength and Integration of Afferent Input to Postural Instability in Persons with Stroke. Neurorehabilitation and Neural Repair, 2004, 18, 222-229.	1.4	90
46	Modulation of ankle muscle postural reflexes in stroke: influence of weight-bearing load. Clinical Neurophysiology, 2004, 115, 2789-2797.	0.7	50
47	Role of the Unperturbed Limb and Arms in the Reactive Recovery Response to an Unexpected Slip During Locomotion. Journal of Neurophysiology, 2003, 89, 1727-1737.	0.9	183
48	Strategies for Dynamic Stability During Locomotion on a Slippery Surface: Effects of Prior Experience and Knowledge. Journal of Neurophysiology, 2002, 88, 339-353.	0.9	295