Karl Josef Langen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7708421/publications.pdf

Version: 2024-02-01

20817 11,992 302 60 citations h-index papers

g-index 320 320 320 8208 docs citations times ranked citing authors all docs

37204

96

#	Article	IF	CITATIONS
1	O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain, 2005, 128, 678-687.	7.6	537
2	Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 540-557.	6.4	348
3	O-(2-[18F]fluoroethyl)-l-tyrosine: uptake mechanisms and clinical applications. Nuclear Medicine and Biology, 2006, 33, 287-294.	0.6	317
4	CORTICAL AND SUBCORTICAL GLUCOSE CONSUMPTION MEASURED BY PET IN PATIENTS WITH HUNTINGTON'S DISEASE. Brain, 1990, 113, 1405-1423.	7.6	268
5	Advances in neuro-oncology imaging. Nature Reviews Neurology, 2017, 13, 279-289.	10.1	264
6	Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-l-tyrosine PET. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 685-695.	6.4	216
7	PET/MRI Radiomics in Patients With Brain Metastases. Frontiers in Neurology, 2020, 11, 1.	2.4	210
8	O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. European Journal of Nuclear Medicine and Molecular Imaging, 2005, 32, 422-429.	6.4	187
9	Assessment of Treatment Response in Patients with Glioblastoma Using <i>O</i> -(2- ¹⁸ F-Fluoroethyl)-l-Tyrosine PET in Comparison to MRI. Journal of Nuclear Medicine, 2012, 53, 1048-1057.	5.0	184
10	Comparison of 18F-FET and 18F-FDG PET in brain tumors. Nuclear Medicine and Biology, 2009, 36, 779-787.	0.6	177
11	Prognostic Value of O-(2-18F-Fluoroethyl)-L-Tyrosine PET and MRI in Low-Grade Glioma. Journal of Nuclear Medicine, 2007, 48, 519-527.	5.0	171
12	Role of <i>O</i> -(2- ¹⁸ F-Fluoroethyl)-l-Tyrosine PET for Differentiation of Local Recurrent Brain Metastasis from Radiation Necrosis. Journal of Nuclear Medicine, 2012, 53, 1367-1374.	5.0	171
13	Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoroethyl-l-tyrosine and magnetic resonance spectroscopy. Journal of Neurosurgery, 2005, 102, 318-327.	1.6	170
14	Diagnostic Performance of ¹⁸ F-FET PET in Newly Diagnosed Cerebral Lesions Suggestive of Glioma. Journal of Nuclear Medicine, 2013, 54, 229-235.	5.0	167
15	Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]Fluoroethyl-l-tyrosine PET in comparison to MRI. European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40, 22-33.	6.4	158
16	PET imaging in patients with meningiomaâ€"report of the RANO/PET Group. Neuro-Oncology, 2017, 19, 1576-1587.	1,2	157
17	Finding the anaplastic focus in diffuse gliomas: The value of Gd-DTPA enhanced MRI, FET-PET, and intraoperative, ALA-derived tissue fluorescence. Clinical Neurology and Neurosurgery, 2011, 113, 541-547.	1.4	151
18	From the clinician's point of view - What is the status quo of positron emission tomography in patients with brain tumors?. Neuro-Oncology, 2015, 17, 1434-1444.	1.2	144

#	Article	IF	CITATIONS
19	Comparison of 18F-FET PET and 5-ALA fluorescence in cerebral gliomas. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 731-741.	6.4	140
20	Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nuclear Medicine and Biology, 2003, 30, 501-508.	0.6	139
21	PET imaging in patients with brain metastasisâ€"report of the RANO/PET group. Neuro-Oncology, 2019, 21, 585-595.	1.2	139
22	High resolution BrainPET combined with simultaneous MRI. Nuklearmedizin - NuclearMedicine, 2011, 50, 74-82.	0.7	138
23	The use of dynamic O-(2-18F-fluoroethyl)-L-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro-Oncology, 2015, 17, 1293-300.	1.2	134
24	Prognostic Value of Early [18F]Fluoroethyltyrosine Positron Emission Tomography After Radiochemotherapy in Glioblastoma Multiforme. International Journal of Radiation Oncology Biology Physics, 2011, 80, 176-184.	0.8	132
25	Brain Tumors. Seminars in Nuclear Medicine, 2012, 42, 356-370.	4.6	129
26	Changed Pattern of Regional Glucose Metabolism during Yoga Meditative Relaxation. Neuropsychobiology, 1990, 23, 182-187.	1.9	123
27	Comparison of ¹⁸ F-FET PET and Perfusion-Weighted MR Imaging: A PET/MR Imaging Hybrid Study in Patients with Brain Tumors. Journal of Nuclear Medicine, 2014, 55, 540-545.	5.0	115
28	Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. NeuroImage: Clinical, 2018, 20, 537-542.	2.7	113
29	Integrated boost IMRT with FET-PET-adapted local dose escalation in glioblastomas. Strahlentherapie Und Onkologie, 2012, 188, 334-339.	2.0	108
30	Role of <i>O</i> -(2- ¹⁸ F-Fluoroethyl)-l-Tyrosine PET as a Diagnostic Tool for Detection of Malignant Progression in Patients with Low-Grade Glioma. Journal of Nuclear Medicine, 2013, 54, 2046-2054.	5.0	108
31	Late Pseudoprogression in Glioblastoma: Diagnostic Value of Dynamic O-(2-[18F]fluoroethyl)-L-Tyrosine PET. Clinical Cancer Research, 2016, 22, 2190-2196.	7.0	106
32	The use of amino acid PET and conventional MRI for monitoring of brain tumor therapy. NeuroImage: Clinical, 2017, 13, 386-394.	2.7	101
33	Whole-body distribution and dosimetry of O-(2-[18F]fluoroethyl)-l-tyrosine. European Journal of Nuclear Medicine and Molecular Imaging, 2003, 30, 519-524.	6.4	97
34	Static and dynamic 18F–FET PET for the characterization of gliomas defined by IDH and 1p/19q status. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 443-451.	6.4	95
35	Imaging challenges of immunotherapy and targeted therapy in patients with brain metastases: response, progression, and pseudoprogression. Neuro-Oncology, 2020, 22, 17-30.	1.2	94
36	Dynamic <i>O</i> -(2- ¹⁸ F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro-Oncology, 2017, 19, now149.	1.2	91

#	Article	IF	Citations
37	18F-FET PET differentiation of ring-enhancing brain lesions. Journal of Nuclear Medicine, 2006, 47, 776-82.	5.0	91
38	Predicting IDH genotype in gliomas using FET PET radiomics. Scientific Reports, 2018, 8, 13328.	3.3	90
39	Differential Uptake of O-(2-18F-Fluoroethyl)-L-Tyrosine, L-3H-Methionine, and 3H-Deoxyglucose in Brain Abscesses. Journal of Nuclear Medicine, 2007, 48, 2056-2062.	5.0	86
40	Radiomics in neuro-oncology: Basics, workflow, and applications. Methods, 2021, 188, 112-121.	3.8	85
41	Functional Disintegration of the Default Mode Network in Prodromal Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 59, 169-187.	2.6	81
42	Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase 18F-FET PET accuracy without dynamic scans. European Radiology, 2017, 27, 2916-2927.	4.5	81
43	Current status of PET imaging in neuro-oncology. Neuro-Oncology Advances, 2019, 1, vdz010.	0.7	78
44	Prognostic Value of ¹⁸ F-Fluoroethyl-l-Tyrosine PET and MRI in Small Nonspecific Incidental Brain Lesions. Journal of Nuclear Medicine, 2008, 49, 730-737.	5.0	77
45	Dual-time-point O-(2-[18F]fluoroethyl)-L-tyrosine PET for grading of cerebral gliomas. European Radiology, 2015, 25, 3017-3024.	4.5	76
46	Imaging of amino acid transport in brain tumours: Positron emission tomography with O-(2-[18) Tj ETQq0 0 0 r	gBT ₃ /Overl	ock 10 Tf 50 3
47	Contribution of PET imaging to radiotherapy planning and monitoring in glioma patients - a report of the PET/RANO group. Neuro-Oncology, 2021, 23, 881-893.	1.2	75
48	PET with O-(2-18F-Fluoroethyl)-L-Tyrosine in peripheral tumors: first clinical results. Journal of Nuclear Medicine, 2005, 46, 411-6.	5.0	75
49	FET PET reveals considerable spatial differences in tumour burden compared to conventional MRI in newly diagnosed glioblastoma. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 591-602.	6.4	74
50	$3-[123I]$ lodo-Î \pm -methyl-L-tyrosine: uptake mechanisms and clinical applications. Nuclear Medicine and Biology, 2002, 29, 625-631.	0.6	69
51	Can the apparent diffusion coefficient be used as a noninvasive parameter to distinguish tumor tissue from peritumoral tissue in cerebral gliomas?. Journal of Magnetic Resonance Imaging, 2004, 20, 758-764.	3.4	69
52	Osteopontin mediates survival, proliferation and migration of neural stem cells through the chemokine receptor CXCR4. Stem Cell Research and Therapy, 2015, 6, 99.	5.5	68
53	Advances in multimodal neuroimaging: Hybrid MR–PET and MR–PET–EEG at 3T and 9.4T. Journal of Magnetic Resonance, 2013, 229, 101-115.	2.1	67
54	18F-FET PET compared with 18F-FDG PET and CT in patients with head and neck cancer. Journal of Nuclear Medicine, 2006, 47, 256-61.	5.0	67

#	Article	IF	CITATIONS
55	Effect of glycaemic control on myocardial sympathetic innervation assessed by [123 I]metaiodobenzylguanidine scintigraphy: a 4-year prospective study in IDDM patients. Diabetologia, 1998, 41, 443-451.	6.3	65
56	Improved nTMS- and DTI-derived CST tractography through anatomical ROI seeding on anterior pontine level compared to internal capsule. NeuroImage: Clinical, 2015, 7, 424-437.	2.7	65
57	Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine PET imaging for the detection of checkpoint inhibitor-related pseudoprogression in melanoma brain metastases. Neuro-Oncology, 2016, 18, 1462-1464.	1.2	65
58	Multimodal imaging utilising integrated MR-PET for human brain tumour assessment. European Radiology, 2012, 22, 2568-2580.	4.5	64
59	The Usefulness of Dynamic <i>O</i> -(2- ¹⁸ F-Fluoroethyl)-l-Tyrosine PET in the Clinical Evaluation of Brain Tumors in Children and Adolescents. Journal of Nuclear Medicine, 2015, 56, 88-92.	5.0	64
60	Aberrant functional connectivity differentiates retrosplenial cortex from posterior cingulate cortex in prodromal Alzheimer's disease. Neurobiology of Aging, 2016, 44, 114-126.	3.1	63
61	Multimodal target point assessment for stereotactic biopsy in children with diffuse bithalamic astrocytomas. Child's Nervous System, 2002, 18, 445-449.	1.1	61
62	Amino acid PET for brain tumours â€" ready for the clinic?. Nature Reviews Neurology, 2016, 12, 375-376.	10.1	60
63	Comparison of 18F-FET PET and perfusion-weighted MRI for glioma grading: a hybrid PET/MR study. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 2257-2265.	6.4	60
64	Integrated-boost IMRT or 3-D-CRT using FET-PET based auto-contoured target volume delineation for glioblastoma multiforme - a dosimetric comparison. Radiation Oncology, 2009, 4, 57.	2.7	59
65	Volumetric assessment of recurrent or progressive gliomas: comparison between F-DOPA PET and perfusion-weighted MRI. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 905-915.	6.4	58
66	Bone regeneration induced by a 3D architectured hydrogel in a rat critical-size calvarial defect. Biomaterials, 2017, 113, 158-169.	11.4	58
67	Differential uptake of [18F]FET and [3H]l-methionine in focal cortical ischemia. Nuclear Medicine and Biology, 2006, 33, 1029-1035.	0.6	55
68	FET PET Radiomics for Differentiating Pseudoprogression from Early Tumor Progression in Glioma Patients Post-Chemoradiation. Cancers, 2020, 12, 3835.	3.7	55
69	Amino acid PET and MR perfusion imaging in brain tumours. Clinical and Translational Imaging, 2017, 5, 209-223.	2.1	54
70	Combined Amino Acid Positron Emission Tomography and Advanced Magnetic Resonance Imaging in Glioma Patients. Cancers, 2019, 11, 153.	3.7	51
71	Late and Prolonged Pseudoprogression in Glioblastoma After Treatment With Lomustine and Temozolomide. Journal of Clinical Oncology, 2012, 30, e180-e183.	1.6	49
72	Loss of Autonoetic Awareness of Recent Autobiographical Episodes and Accelerated Long-Term Forgetting in a Patient with Previously Unrecognized Glutamic Acid Decarboxylase Antibody Related Limbic Encephalitis. Frontiers in Neurology, 2015, 6, 130.	2.4	48

#	Article	IF	CITATIONS
73	Cost-effectiveness analysis of FET PET-guided target selection for the diagnosis of gliomas. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 1089-1096.	6.4	47
74	The Use of <i>O</i> -(2- ¹⁸ F-Fluoroethyl)-l-Tyrosine PET for Treatment Management of Bevacizumab and Irinotecan in Patients with Recurrent High-Grade Glioma: A Cost-Effectiveness Analysis. Journal of Nuclear Medicine, 2013, 54, 1217-1222.	5 . 0	47
75	Differentiation of treatment-related changes from tumour progression: a direct comparison between dynamic FET PET and ADC values obtained from DWI MRI. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1889-1901.	6.4	47
76	¹⁸ F-FET PET Imaging in Differentiating Glioma Progression from Treatment-Related Changes: A Single-Center Experience. Journal of Nuclear Medicine, 2020, 61, 505-511.	5.0	47
77	Dabrafenib in patients with recurrent, BRAF V600E mutated malignant glioma and leptomeningeal disease. Oncology Reports, 2017, 38, 3291-3296.	2.6	46
78	Imaging of sodium in the brain: a brief review. NMR in Biomedicine, 2016, 29, 162-174.	2.8	45
79	Epileptic Activity Increases Cerebral Amino Acid Transport Assessed by ¹⁸ F-Fluoroethyl-I-Tyrosine Amino Acid PET: A Potential Brain Tumor Mimic. Journal of Nuclear Medicine, 2017, 58, 129-137.	5.0	45
80	Early treatment response evaluation using FET PET compared to MRI in glioblastoma patients at first progression treated with bevacizumab plus lomustine. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 2377-2386.	6.4	45
81	Preferred stereoselective brain uptake of d-serine — a modulator of glutamatergic neurotransmission. Nuclear Medicine and Biology, 2005, 32, 793-797.	0.6	44
82	Functional MRI vs. navigated TMS to optimize M1 seed volume delineation for DTI tractography. A prospective study in patients with brain tumours adjacent to the corticospinal tract. NeuroImage: Clinical, 2017, 13, 297-309.	2.7	44
83	Pseudoprogression after glioma therapy: an update. Expert Review of Neurotherapeutics, 2017, 17, 1109-1115.	2.8	40
84	Evaluation of QT Interval Length, QT Dispersion and Myocardial m-iodobenzylguanidine Uptake in Insulin-Dependent Diabetic Patients with and Without Autonomic Neuropathy. Clinical Science, 1997, 93, 325-333.	4.3	39
85	Assessment of PET Tracer Uptake in Hormone-Independent and Hormone-Dependent Xenograft Prostate Cancer Mouse Models. Journal of Nuclear Medicine, 2011, 52, 1654-1663.	5.0	39
86	QIAD assay for quantitating a compound's efficacy in elimination of toxic Aβ oligomers. Scientific Reports, 2015, 5, 13222.	3.3	39
87	Osteopontin Augments M2 Microglia Response and Separates M1- and M2-Polarized Microglial Activation in Permanent Focal Cerebral Ischemia. Mediators of Inflammation, 2017, 2017, 1-11.	3.0	39
88	Earlier Diagnosis of Progressive Disease during Bevacizumab Treatment Using O-(2- ¹⁸ F-Fluorethyl)-L-Tyrosine Positron Emission Tomography in Comparison with Magnetic Resonance Imaging. Molecular Imaging, 2013, 12, 7290.2013.00051.	1.4	38
89	Amino Acid PET – An Imaging Option to Identify Treatment Response, Posttherapeutic Effects, and Tumor Recurrence?. Frontiers in Neurology, 2016, 7, 120.	2.4	37
90	Sequential implementation of DSC-MR perfusion and dynamic [18F]FET PET allows efficient differentiation of glioma progression from treatment-related changes. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 1956-1965.	6.4	37

#	Article	IF	Citations
91	Normal striatal glucose consumption in two patients with benign hereditary chorea as measured by positron emission tomography. Journal of Neurology, 1990, 237, 80-84.	3.6	36
92	Preferred Stereoselective Transport of the D-isomer of cis-4-[18F]fluoro-proline at the Blood–Brain Barrier. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 607-616.	4.3	36
93	Post-stroke treatment with argon attenuated brain injury, reduced brain inflammation and enhanced M2 microglia/macrophage polarization: a randomized controlled animal study. Critical Care, 2019, 23, 198.	5.8	36
94	18F-FET PET Uptake Characteristics in Patients with Newly Diagnosed and Untreated Brain Metastasis. Journal of Nuclear Medicine, 2017, 58, 584-589.	5.0	36
95	Monitoring isotretinoin therapy in thyroid cancer using 18F-FDG PET. European Journal of Nuclear Medicine and Molecular Imaging, 2002, 29, 231-236.	6.4	35
96	Positron Emission Tomography Imaging of Meningioma in Clinical Practice. Neurosurgery, 2012, 70, 1033-1042.	1.1	35
97	Pharmacokinetic Properties of a Novel d-Peptide Developed to be Therapeutically Active Against Toxic \hat{l}^2 -Amyloid Oligomers. Pharmaceutical Research, 2016, 33, 328-336.	3.5	35
98	Comparison of O-(2-18 F-Fluoroethyl)-L-Tyrosine Positron Emission Tomography and Perfusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Patients with Progressive and Recurrent Glioma: A Hybrid Positron Emission Tomography/Magnetic Resonance Study. World Neurosurgery, 2018, 113, e727-e737.	1.3	34
99	3-[1231]lodo-α-methyl-L-tyrosine uptake in cerebral gliomas: relationship to histological grading and prognosis. European Journal of Nuclear Medicine and Molecular Imaging, 2001, 28, 855-861.	2.1	33
100	Comparison of $\langle i \rangle O \langle i \rangle - (2 - \langle \sup \rangle 18 \langle \sup \rangle F$ -Fluoroethyl)-l-Tyrosine and l- $\langle \sup \rangle 3 \langle \sup \rangle H$ -Methionine Uptake in Cerebral Hematomas. Journal of Nuclear Medicine, 2010, 51, 790-797.	5.0	33
101	Current Landscape and Emerging Fields of PET Imaging in Patients with Brain Tumors. Molecules, 2020, 25, 1471.	3.8	33
102	Cost-Effectiveness Analysis of Amino Acid PET–Guided Surgery for Supratentorial High-Grade Gliomas. Journal of Nuclear Medicine, 2012, 53, 552-558.	5.0	32
103	Comparison of EEG microstates with resting state fMRI and FDGâ€PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data. Human Brain Mapping, 2021, 42, 4122-4133.	3.6	32
104	Cerebral glucose consumption measured by PET in patients with and without psychiatric symptoms of Huntington's disease. Psychiatry Research, 1989, 29, 361-362.	3.3	31
105	Update on amino acid PET of brain tumours. Current Opinion in Neurology, 2018, 31, 354-361.	3.6	31
106	Photopenic defects on O-(2-[18F]-fluoroethyl)-L-tyrosine PET: clinical relevance in glioma patients. Neuro-Oncology, 2019, 21, 1331-1338.	1.2	31
107	Posthypoxic amnesia: regional cerebral glucose consumption measured by positron emission tomography. Journal of the Neurological Sciences, 1993, 118, 10-16.	0.6	30
108	Relapse patterns after radiochemotherapy of glioblastoma with FET PET-guided boost irradiation and simulation to optimize radiation target volume. Radiation Oncology, $2016,11,87.$	2.7	30

#	Article	IF	CITATIONS
109	Relevant tumor sink effect in prostate cancer patients receiving 177Lu-PSMA-617 radioligand therapy. Nuklearmedizin - NuclearMedicine, 2018, 57, 19-25.	0.7	30
110	Current trends in the use of O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) in neurooncology. Nuclear Medicine and Biology, 2021, 92, 78-84.	0.6	30
111	Tomographic Studies of rCBF with [99mTc]-HM-PAO SPECT in Patients with Brain Tumors: Comparison with C15O2 Continuous Inhalation Technique and PET. Journal of Cerebral Blood Flow and Metabolism, 1988, 8, S90-S94.	4.3	29
112	5-Aminolevulinic Acid and 18F-FET-PET as Metabolic Imaging Tools for Surgery of a Recurrent Skull Base Meningioma. Journal of Neurological Surgery, Part B: Skull Base, 2013, 74, 211-216.	0.8	29
113	Preclinical Pharmacokinetic Studies of the Tritium Labelled D-Enantiomeric Peptide D3 Developed for the Treatment of Alzheimer´s Disease. PLoS ONE, 2015, 10, e0128553.	2.5	29
114	AÎ ² Oligomer Elimination Restores Cognition in Transgenic Alzheimer's Mice with Full-blown Pathology. Molecular Neurobiology, 2019, 56, 2211-2223.	4.0	29
115	Influence of Bevacizumab on Blood–Brain Barrier Permeability and <i>>O</i> -(2- ¹⁸ F-Fluoroethyl)-l-Tyrosine Uptake in Rat Gliomas. Journal of Nuclear Medicine, 2017, 58, 700-705.	5.0	27
116	O-(2-18F-fluoroethyl)-L-tyrosine PET for evaluation of brain metastasis recurrence after radiotherapy: an effectiveness and cost-effectiveness analysis. Neuro-Oncology, 2017, 19, 1271-1278.	1.2	27
117	Spatial Relationship of Glioma Volume Derived from ¹⁸ F-FET PET and Volumetric MR Spectroscopy Imaging: A Hybrid PET/MRI Study. Journal of Nuclear Medicine, 2018, 59, 603-609.	5.0	27
118	Transport of cis- and trans-4-[18F]fluoro-L-proline in F98 glioma cells. Nuclear Medicine and Biology, 2002, 29, 685-692.	0.6	25
119	Prognostic Value of ¹⁸ F-FDG PET in Monosegmental Stenosis and Myelopathy of the Cervical Spinal Cord. Journal of Nuclear Medicine, 2011, 52, 1385-1391.	5.0	25
120	A Preliminary Study on Machine Learning-Based Evaluation of Static and Dynamic FET-PET for the Detection of Pseudoprogression in Patients with IDH-Wildtype Glioblastoma. Cancers, 2020, 12, 3080.	3.7	25
121	Early treatment response assessment using ¹⁸ F-FET PET compared to contrast-enhanced MRI in glioma patients following adjuvant temozolomide chemotherapy. Journal of Nuclear Medicine, 2021, 62, jnumed.120.254243.	5.0	25
122	Treatment Monitoring of Immunotherapy and Targeted Therapy Using $<$ sup $>$ 18 $<$ /sup $>$ F-FET PET in Patients with Melanoma and Lung Cancer Brain Metastases: Initial Experiences. Journal of Nuclear Medicine, 2021, 62, 464-470.	5.0	25
123	Molecular transport mechanisms of radiolabeled amino acids for PET and SPECT. Journal of Nuclear Medicine, 2004, 45, 1435-6.	5.0	25
124	Uptake of O-(2-[18F]fluoroethyl)-L-tyrosine in reactive astrocytosis in the vicinity of cerebral gliomas. Nuclear Medicine and Biology, 2013, 40, 795-800.	0.6	24
125	Uptake and tracer kinetics of O-(2-18F-fluoroethyl)-l-tyrosine in meningiomas: preliminary results. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 459-467.	6.4	24
126	Cerebral Glucose Metabolism in Type 1 Diabetic Patients. Diabetic Medicine, 1994, 11, 205-209.	2.3	23

#	Article	IF	CITATIONS
127	Early deficits in declarative and procedural memory dependent behavioral function in a transgenic rat model of Huntington's disease. Behavioural Brain Research, 2013, 239, 15-26.	2.2	23
128	Clinical value of O-(2-[18F]-fluoroethyl)-L-tyrosine positron emission tomography in patients with low-grade glioma. Neurosurgical Focus, 2013, 34, E3.	2.3	23
129	Whole-body kinetics and dosimetry ofl-3-[1231]iodo-?-methyltyrosine. European Journal of Nuclear Medicine and Molecular Imaging, 1997, 24, 1162-1166.	2.1	22
130	Diagnostics of Cerebral Gliomas With Radiolabeled Amino Acids. Deutsches Ärzteblatt International, 2008, 105, 55-61.	0.9	22
131	Pharmacokinetic properties of tandem d-peptides designed for treatment of Alzheimer's disease. European Journal of Pharmaceutical Sciences, 2016, 89, 31-38.	4.0	21
132	Blood-brain barrier penetration of an \hat{A}^2 -targeted, arginine-rich, d -enantiomeric peptide. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2717-2724.	2.6	21
133	Amino acid PET in neuro-oncology: applications in the clinic. Expert Review of Anticancer Therapy, 2017, 17, 395-397.	2.4	21
134	Influence of blood-brain barrier permeability on O-(2-18F-fluoroethyl)-L-tyrosine uptake in rat gliomas. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 408-416.	6.4	21
135	Excitatory–inhibitory balance within EEG microstates and resting-state fMRI networks: assessed via simultaneous trimodal PET–MR–EEG imaging. Translational Psychiatry, 2021, 11, 60.	4.8	21
136	Applications of PET imaging of neurological tumors with radiolabeled amino acids. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2015, 59, 70-82.	0.7	21
137	Osteopontin Attenuates Secondary Neurodegeneration in the Thalamus after Experimental Stroke. Journal of NeuroImmune Pharmacology, 2019, 14, 295-311.	4.1	20
138	mGluR5 receptor availability is associated with lower levels of negative symptoms and better cognition in male patients with chronic schizophrenia. Human Brain Mapping, 2020, 41, 2762-2781.	3.6	20
139	Regional Cerebral Glucose Consumption Measured by Positron Emission Tomography in Patients with Unilateral Thalamic Infarction. Cerebrovascular Diseases, 1991, 1, 327-336.	1.7	19
140	Detection of Secondary Thalamic Degeneration After Cortical Infarction Using cis-4-18F-Fluoro-D-Proline. Journal of Nuclear Medicine, 2007, 48, 1482-1491.	5.0	19
141	Monitoring of Radiochemotherapy in Patients with Glioblastoma Using <i>O</i> -(2-[¹⁸) Tj ETQq1 1 Imaging, 2013, 12, 7290.2013.00056.	0.784314 1.4	rgBT /Over 19
142	Voxel-based 18F-FET PET segmentation and automatic clustering of tumor voxels: A significant association with IDH1 mutation status and survival in patients with gliomas. PLoS ONE, 2018, 13, e0199379.	2.5	19
143	Diagnosis of Pseudoprogression Following Lomustine–Temozolomide Chemoradiation in Newly Diagnosed Glioblastoma Patients Using FET-PET. Clinical Cancer Research, 2021, 27, 3704-3713.	7.0	19
144	Whole-body kinetics and dosimetry of cis-4-[18F]fluoro-l-proline. Nuclear Medicine and Biology, 2001, 28, 287-292.	0.6	18

#	Article	IF	Citations
145	Regional impairment of 18F-FDG uptake in the cervical spinal cord in patients with monosegmental chronic cervical myelopathy. European Radiology, 2010, 20, 2925-2932.	4.5	18
146	Relationship of regional cerebral blood flow and kinetic behaviour of O-(2-18F-fluoroethyl)-L-tyrosine uptake in cerebral gliomas. Nuclear Medicine Communications, 2014, 35, 245-251.	1.1	18
147	Evaluation of factors influencing 18F-FET uptake in the brain. Neurolmage: Clinical, 2018, 17, 491-497.	2.7	18
148	Role of the default mode resting-state network for cognitive functioning in malignant glioma patients following multimodal treatment. NeuroImage: Clinical, 2020, 27, 102287.	2.7	18
149	Protease Responsive Nanogels for Transcytosis across the Bloodâ ² Brain Barrier and Intracellular Delivery of Radiopharmaceuticals to Brain Tumor Cells. Advanced Healthcare Materials, 2021, 10, e2100812.	7.6	18
150	Earlier diagnosis of progressive disease during bevacizumab treatment using O-(2-18F-fluorethyl)-L-tyrosine positron emission tomography in comparison with magnetic resonance imaging. Molecular Imaging, 2013, 12, 273-6.	1.4	18
151	Investigations of brain tumours with 99Tcm-HMPAO SPECT. Nuclear Medicine Communications, 1989, 10, 325-334.	1.1	17
152	Imaging of gliomas with Cis-4-[18F]fluoro-L-proline. Nuclear Medicine and Biology, 2004, 31, 67-75.	0.6	17
153	Hypermetabolism in ¹⁸ F-FDG PET Predicts Favorable Outcome Following Decompressive Surgery in Patients with Degenerative Cervical Myelopathy. Journal of Nuclear Medicine, 2013, 54, 1577-1583.	5.0	17
154	Hybrid MR-PET of brain tumours using amino acid PET and chemical exchange saturation transfer MRI. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 1031-1040.	6.4	17
155	Evaluation of FET PET Radiomics Feature Repeatability in Glioma Patients. Cancers, 2021, 13, 647.	3.7	17
156	O-(2-[18F]-Fluoroethyl)-L-Tyrosine (FET) in Neurooncology: A Review of Experimental Results. Current Radiopharmaceuticals, 2019, 12, 201-210.	0.8	17
157	Quantification of the whole-body distribution of PET radiopharmaceuticals, applied to 3-N-([18F]fluoroethyl)spiperone. European Journal of Nuclear Medicine and Molecular Imaging, 1990, 16, 77-83.	2.1	16
158	Comparison of ^{99m} Tc- and ¹⁸ F-Ubiquicidin Autoradiography to Antiâ€" <i>Staphylococcus aureus</i> Immunofluorescence in Rat Muscle Abscesses. Journal of Nuclear Medicine, 2008, 49, 995-999.	5.0	16
159	Letter to the Editor: "The role of imaging in the management of progressive glioblastoma. A systematic review and evidence-based clinical practice guideline―[J Neurooncol 2014; 118:435–460]. Journal of Neuro-Oncology, 2014, 120, 665-666.	2.9	16
160	Comparison of [18F]Fluoroethyltyrosine PET and Sodium MRI in Cerebral Gliomas: a Pilot Study. Molecular Imaging and Biology, 2020, 22, 198-207.	2.6	16
161	Prediction of survival in patients with IDH-wildtype astrocytic gliomas using dynamic O-(2-[18F]-fluoroethyl)-l-tyrosine PET. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 1486-1495.	6.4	16
162	lodine-123 α-methyl tyrosine single-photon emission tomography of cerebral gliomas: standardised evaluation of tumour uptake and extent. European Journal of Nuclear Medicine and Molecular Imaging, 1998, 25, 150-156.	6.4	15

#	Article	IF	CITATIONS
163	Recent Advances of PET in the Diagnosis of Brain Tumors. , 1999, 33, 9-22.		15
164	Reproducibility of O-(2-18F-fluoroethyl)-L-tyrosine uptake kinetics in brain tumors and influence of corticoid therapy: an experimental study in rat gliomas. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 1115-1123.	6.4	15
165	PET Imaging in Glioblastoma: Use in Clinical Practice. , 0, , 155-174.		15
166	Multimodal Imaging in Malignant Brain Tumors: Enhancing the Preoperative Risk Evaluation for Motor Deficits with a Combined Hybrid MRI-PET and Navigated Transcranial Magnetic Stimulation Approach. American Journal of Neuroradiology, 2016, 37, 266-273.	2.4	14
167	O-(2-[18F]fluoroethyl)-l-tyrosine PET in gliomas: influence of data processing in different centres. EJNMMI Research, 2017, 7, 64.	2.5	14
168	Use of FET PET in glioblastoma patients undergoing neurooncological treatment including tumour-treating fields: initial experience. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 1626-1635.	6.4	14
169	The JÃ $\frac{1}{4}$ lich Experience With Simultaneous 3T MR-BrainPET: Methods and Technology. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3, 352-362.	3.7	14
170	Invasive versus nonâ€invasive mapping of the motor cortex. Human Brain Mapping, 2020, 41, 3970-3983.	3.6	14
171	Investigational PET tracers in neuro-oncology—What's on the horizon? A report of the PET/RANO group. Neuro-Oncology, 2022, 24, 1815-1826.	1.2	14
172	Discrepant MR and [¹⁸ F]Fluoroethyl- <smlcap>l</smlcap> -Tyrosine PET Imaging Findings in a Patient with Bevacizumab Failure. Case Reports in Oncology, 2012, 5, 493-497.	0.7	13
173	Reply to "[18F]-fluoro-ethyl-L-tyrosine PET: a valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma" by Hutterer et al Neuro-Oncology, 2013, 15, 816-817.	1.2	13
174	Methods for molecular imaging of brain tumours in a hybrid MR-PET context: Water content, T2a^-, diffusion indices and FET-PET. Methods, 2017, 130, 135-151.	3.8	13
175	An MR technique for simultaneous quantitative imaging of water content, conductivity and susceptibility, with application to brain tumours using a 3T hybrid MR-PET scanner. Scientific Reports, 2019, 9, 88.	3.3	13
176	Deceleration of the neurodegenerative phenotype in pyroglutamate- $A\hat{l}^2$ accumulating transgenic mice by oral treatment with the $A\hat{l}^2$ oligomer eliminating compound RD2. Neurobiology of Disease, 2019, 124, 36-45.	4.4	13
177	Feature-based PET/MRI radiomics in patients with brain tumors. Neuro-Oncology Advances, 2020, 2, iv15-iv21.	0.7	13
178	High uptake of 68Ga-PSMA and 18F-DCFPyL in the peritumoral area of rat gliomas due to activated astrocytes. EJNMMI Research, 2020, 10, 55.	2.5	13
179	Isomers of 4-[¹⁸ F]fluoro-proline: Radiosynthesis, Biological Evaluation and Results in Humans Using PET. Current Radiopharmaceuticals, 2014, 7, 123-132.	0.8	13
180	3-[123I]iodo-α-methyl-l-tyrosine transport and 4F2 antigen expression in human glioma cells. Nuclear Medicine and Biology, 2001, 28, 5-11.	0.6	12

#	Article	IF	Citations
181	Effects of dietary tryptophan and phenylalanine–tyrosine depletion on phasic alertness in healthy adults – A pilot study. Food and Nutrition Research, 2015, 59, 26407.	2.6	12
182	[18F]desmethoxyfallypride as a novel PET radiotracer for quantitative in vivo dopamine D2/D3 receptor imaging in rat models of neurodegenerative diseases. Nuclear Medicine and Biology, 2012, 39, 1077-1080.	0.6	11
183	Comparison of blood-brain barrier penetration efficiencies between linear and cyclic all-d-enantiomeric peptides developed for the treatment of Alzheimer's disease. European Journal of Pharmaceutical Sciences, 2018, 114, 93-102.	4.0	11
184	Influence of Dexamethasone on O-(2-[18F]-Fluoroethyl)-l-Tyrosine Uptake in the Human Brain and Quantification of Tumor Uptake. Molecular Imaging and Biology, 2019, 21, 168-174.	2.6	11
185	Spatial distributions of cholinergic impairment and neuronal hypometabolism differ in MCI due to AD. NeuroImage: Clinical, 2019, 24, 101978.	2.7	11
186	Diagnostic impact of additional O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) PET following immunotherapy with dendritic cell vaccination in glioblastoma patients. British Journal of Neurosurgery, 2019, , 1-7.	0.8	11
187	Monitoring of radiochemotherapy in patients with glioblastoma using O-($2-\hat{A}^1\hat{a}$ -fluoroethyl)-L-tyrosine positron emission tomography: is dynamic imaging helpful?. Molecular Imaging, 2013, 12, 388-95.	1.4	11
188	Use of advanced neuroimaging and artificial intelligence in meningiomas. Brain Pathology, 2022, 32, e13015.	4.1	11
189	Static FET PET radiomics for the differentiation of treatment-related changes from glioma progression. Journal of Neuro-Oncology, 2022, 159, 519-529.	2.9	11
190	Fluorine-18—labeled fluorodeoxyglucose—positron emission tomography studies of acute brainstem Lyme neutoborreliosis. Journal of Neurosurgery, 2005, 102, 927-929.	1.6	10
191	Cerebral kinetics of the dopamine D2 receptor ligand [1231]IBZM in mice. Nuclear Medicine and Biology, 2008, 35, 467-473.	0.6	10
192	Comparison of intravenous and intraperitoneal [1231]IBZM injection for dopamine D2 receptor imaging in mice. Nuclear Medicine and Biology, 2008, 35, 543-548.	0.6	10
193	Correlative Imaging of Hypoxia and Angiogenesis in Oncology. Journal of Nuclear Medicine, 2008, 49, 515-516.	5.0	10
194	Meningioangiomatosis in a patient with progressive focal neurological deficit-case report and review of literature. British Journal of Neurosurgery, 2013, 27, 253-255.	0.8	10
195	Clinical value of 2-deoxy-[18F]fluoro-d-glucose positron emission tomography in patients with cervical spondylotic myelopathy. Neurosurgical Focus, 2013, 35, E2.	2.3	10
196	AIDS-Related Central Nervous System Toxoplasmosis With Increased 18F-Fluoroethyl-I-Tyrosine Amino Acid PET Uptake Due to LAT1/2 Expression of Inflammatory Cells. Clinical Nuclear Medicine, 2017, 42, e506-e508.	1.3	10
197	Comprehensive Characterization of the Pyroglutamate Amyloid-β Induced Motor Neurodegenerative Phenotype of TBA2.1 Mice. Journal of Alzheimer's Disease, 2018, 63, 115-130.	2.6	10
198	In Vitro Potency and Preclinical Pharmacokinetic Comparison of All-D-Enantiomeric Peptides Developed forAthe Treatment of Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 64, 859-873.	2.6	10

#	Article	IF	Citations
199	Imaging findings following regorafenib in malignant gliomas: FET PET adds valuable information to anatomical MRI. Neuro-Oncology Advances, 2019, 1, vdz038.	0.7	10
200	Molecular imaging and advanced MRI findings following immunotherapy in patients with brain tumors. Expert Review of Anticancer Therapy, 2020, 20, 9-15.	2.4	10
201	Flare Phenomenon in O-(2-18F-Fluoroethyl)-l-Tyrosine PET After Resection of Gliomas. Journal of Nuclear Medicine, 2020, 61, 1294-1299.	5.0	10
202	Investigational PET tracers for high-grade gliomas. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2018, 62, 281-294.	0.7	10
203	MR-PET opens new horizons in neuroimaging. Future Neurology, 2010, 5, 807-815.	0.5	9
204	Characterization of [¹²³ I]FPâ€CIT binding to the dopamine transporter in the striatum of tree shrews by quantitative <i>in vitro</i> autoradiography. Synapse, 2015, 69, 497-504.	1.2	9
205	A \hat{l}^2 oligomer eliminating compounds interfere successfully with pEA \hat{l}^2 (3â \in "42) induced motor neurodegenerative phenotype in transgenic mice. Neuropeptides, 2018, 67, 27-35.	2.2	9
206	Comment on "Hypometabolic gliomas on FET-PETâ€"is there an inverted U-curve for survival?― Neuro-Oncology, 2019, 21, 1612-1613.	1.2	9
207	Simultaneous PET-MR-EEG: Technology, Challenges and Application in Clinical Neuroscience. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3, 377-385.	3.7	9
208	18F-FET-PET-guided gross total resection improves overall survival in patients with WHO grade III/IV glioma: moving towards a multimodal imaging-guided resection. Journal of Neuro-Oncology, 2021, 155, 71-80.	2.9	9
209	Prognostic value of pre-irradiation FET PET in patients with not completely resectable IDH-wildtype glioma and minimal or absent contrast enhancement. Scientific Reports, 2021, 11, 20828.	3.3	9
210	On the influence of spatial resolution and of the size and form of regions of interest on the measurement of regional cerebral metabolic rates by positron emission tomography., 1992, 37, 53-66.		9
211	Tomographic studies of rCBF with99mTc-HM-PAO SPECT in comparison with PET in patients with primary brain tumors. Neurosurgical Review, 1987, 10, 23-24.	2.4	8
212	Detection of Remote Neuronal Reactions in the Thalamus and Hippocampus Induced by Rat Glioma Using the PET Tracer <i>Cis</i> -4-[¹⁸ F]Fluoro-D-Proline. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 724-731.	4.3	8
213	The use of O-(2-18F-fluoroethyl)-L-tyrosine PET in the diagnosis of gliomas located in the brainstem and spinal cord. Neuro-Oncology, 2016, 19, now 243.	1.2	8
214	Advantages and limitations of amino acid PET for tracking therapy response in glioma patients. Expert Review of Neurotherapeutics, 2020, 20, 137-146.	2.8	8
215	Lesion-Function Analysis from Multimodal Imaging and Normative Brain Atlases for Prediction of Cognitive Deficits in Glioma Patients. Cancers, 2021, 13, 2373.	3.7	8
216	Two Decades of Brain Tumour Imaging with O-(2-[18F]fluoroethyl)-L-tyrosine PET: The Forschungszentrum JÃ 1 /4lich Experience. Cancers, 2022, 14, 3336.	3.7	8

#	Article	lF	CITATIONS
217	Evaluation of new 18F-labeled amino acids for brain PET. Anatomy and Embryology, 2005, 210, 455-461.	1.5	7
218	cis-4-[18F]-Fluoro-l-proline fails to detect peripheral tumors in humans. Nuclear Medicine and Biology, 2008, 35, 895-900.	0.6	7
219	⁶⁸ Ga-DOTATATE-positron emission tomography imaging in spinal meningioma. Journal of Craniovertebral Junction and Spine, 2014, 5, 44.	0.8	7
220	Dissociated Crossed Speech Areas in a Tumour Patient. Case Reports in Neurology, 2017, 9, 131-136.	0.7	7
221	FET PET in Primary Central Nervous System Vasculitis. Clinical Nuclear Medicine, 2018, 43, e322-e323.	1.3	7
222	On the Extraction and Analysis of Graphs From Resting-State fMRI to Support a Correct and Robust Diagnostic Tool for Alzheimer's Disease. Frontiers in Neuroscience, 2018, 12, 528.	2.8	7
223	Treatment-Related Uptake of <i>O</i> -(2- ¹⁸ F-Fluoroethyl)-l-Tyrosine and l-[Methyl- ³ H]-Methionine After Tumor Resection in Rat Glioma Models. Journal of Nuclear Medicine, 2019, 60, 1373-1379.	5.0	7
224	Relaxometry and quantification in sodium MRI of cerebral gliomas: A FETâ€PET and MRI smallâ€scale study. NMR in Biomedicine, 2020, 33, e4361.	2.8	7
225	Effect of Zolpidem in the Aftermath of Traumatic Brain Injury: An MEG Study. Case Reports in Neurological Medicine, 2020, 2020, 1-8.	0.4	7
226	mGluR5 binding changes during a mismatch negativity task in a multimodal protocol with [11C]ABP688 PET/MR-EEG. Translational Psychiatry, 2022, 12, 6.	4.8	7
227	Development of a high resolution, 2D detector system for iodine-131-scintigraphy. IEEE Transactions on Nuclear Science, 2000, 47, 1085-1087.	2.0	6
228	18F-DOPA Positron Emission Tomography in Medulloblastoma: 2 Case Reports. World Neurosurgery, 2016, 93, 490.e7-490.e11.	1.3	6
229	Investigation of cis-4-[18F]Fluoro-D-Proline Uptake in Human Brain Tumors After Multimodal Treatment. Molecular Imaging and Biology, 2018, 20, 1035-1043.	2.6	6
230	A Novel Anti-Inflammatory d-Peptide Inhibits Disease Phenotype Progression in an ALS Mouse Model. Molecules, 2021, 26, 1590.	3.8	6
231	Finding New Communities: A Principle of Neuronal Network Reorganization in Alzheimer's Disease. Brain Connectivity, 2021, 11, 225-238.	1.7	6
232	Tumor-free survival of 7 years after gene therapy for recurrent glioblastoma. Neurology, 2003, 61, 270-271.	1.1	5
233	Advances in hybrid MR–PET at 3T and 9.4T in humans. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 702, 16-21.	1.6	5
234	TSPO PET using 18F-GE-180: a new perspective in neurooncology?. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 2227-2229.	6.4	5

#	Article	IF	CITATIONS
235	No detectable effects of acute tryptophan depletion on short-term immune system cytokine levels in healthy adults. World Journal of Biological Psychiatry, 2019, 20, 416-423.	2.6	5
236	Comparison of the Amyloid Load in the Brains of Two Transgenic Alzheimer's Disease Mouse Models Quantified by Florbetaben Positron Emission Tomography. Frontiers in Neuroscience, 2021, 15, 699926.	2.8	5
237	Automatic derivation of an MR-PET image-based input function for quantification of 18F-FET. EJNMMI Physics, 2015, 2, A27.	2.7	4
238	Cis-4-[18F]fluoro-D-proline detects neurodegeneration in patients with akinetic-rigid parkinsonism. Nuclear Medicine Communications, 2019, 40, 383-387.	1.1	4
239	Combined 18F-FET PET and diffusion kurtosis MRI in posttreatment glioblastoma: differentiation of true progression from treatment-related changes. Neuro-Oncology Advances, 2021, 3, vdab044.	0.7	4
240	PEAÎ ² Triggers Cognitive Decline and Amyloid Burden in a Novel Mouse Model of Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 7062.	4.1	4
241	Sex-Related Motor Deficits in the Tau-P301L Mouse Model. Biomedicines, 2021, 9, 1160.	3.2	4
242	Positron-Emission-Tomography in Diffuse Low-Grade Gliomas. , 2017, , 263-286.		4
243	Surgery of Motor Eloquent Glioblastoma Guided by TMS-Informed Tractography: Driving Resection Completeness Towards Prolonged Survival. Frontiers in Oncology, 0, 12, .	2.8	4
244	Blood brain barrier blocks transport of carboxyl-11C-nicotinic acid into human brain. European Journal of Nuclear Medicine and Molecular Imaging, 1988, 14, 53-4.	2.1	3
245	Performance measurement of a new high-resolution detector system for I-131 thyroid studies. IEEE Transactions on Nuclear Science, 2001, 48, 625-627.	2.0	3
246	Creating consistent 3D multi-modality data sets from autoradiographic and histological images of the rat brain. , 0, , .		3
247	Congruency of tumour volume delineated by FET PET and MRSI. EJNMMI Physics, 2015, 2, A61.	2.7	3
248	NIMG-32. DIFFERENTIATION OF PSEUDOPROGRESSION FROM TUMOR PROGRESSION IN GLIOBLASTOMA PATIENTS BASED ON FET PET RADIOMICS. Neuro-Oncology, 2017, 19, vi148-vi149.	1.2	3
249	Correlation of Dynamic O-(2-[18F]Fluoroethyl)-L-Tyrosine Positron Emission Tomography, Conventional Magnetic Resonance Imaging, and Whole-Brain Histopathology in a Pretreated Glioblastoma: A Postmortem Study. World Neurosurgery, 2018, 119, e653-e660.	1.3	3
250	Dynamic FET PET Imaging of a "Butterfly―IDH-Wildtype Anaplastic Astrocytoma. Clinical Nuclear Medicine, 2019, 44, e581-e582.	1.3	3
251	Investigation of Cerebral O-(2-[18F]Fluoroethyl)-L-Tyrosine Uptake in Rat Epilepsy Models. Molecular Imaging and Biology, 2020, 22, 1255-1265.	2.6	3
252	Oral Treatment with RD2RD2 Impedes Development of Motoric Phenotype and Delays Symptom Onset in SOD1G93A Transgenic Mice. International Journal of Molecular Sciences, 2021, 22, 7066.	4.1	3

#	Article	IF	CITATIONS
253	Amino Acid Transport Studies in Brain Tumors. , 2003, , 477-485.		3
254	Treatment monitoring of immunotherapy and targeted therapy using FET PET in patients with melanoma and lung cancer brain metastases: Initial experiences Journal of Clinical Oncology, 2019, 37, e13525-e13525.	1.6	3
255	Dietary tryptophan depletion in humans using a simplified two amino acid formula–Âa pilot study. Food and Nutrition Research, 2016, 60, 29272.	2.6	3
256	Case Report: Disruption of Resting-State Networks and Cognitive Deficits After Whole Brain Irradiation for Singular Brain Metastasis. Frontiers in Neuroscience, 2021, 15, 738708.	2.8	3
257	An in vivo multimodal feasibility study in a rat brain tumour model using flexible multinuclear MR and PET systems. EJNMMI Physics, 2020, 7, 50.	2.7	3
258	Molecular Imaging of Brain Tumors. Neuromethods, 2012, , 345-357.	0.3	2
259	NI-37 * INCREASED CEREBRAL AMINO ACID UPTAKE DURING AND AFTER EPILEPTIC DISORDERS MIMICS BRAIN TUMOR IN 18F-FET PET. Neuro-Oncology, 2014, 16, v146-v146.	1.2	2
260	Histogram analysis reveals a better delineation of tumor volume from background in 18F-FET PET compared to CBV maps in a hybrid PET–MR studie in gliomas. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 734, 175-178.	1.6	2
261	Simultaneous trimodal MR-PET-EEG imaging for the investigation of resting state networks in humans. EJNMMI Physics, 2015, 2, A71.	2.7	2
262	PET imaging in glioma: is it time for mainstream practice?. Neuro-Oncology, 2016, 18, 1193-1194.	1.2	2
263	NIMG-79. EARLY TREATMENT RESPONSE ASSESSMENT USING O-(2-18F-FLUOROETHYL)-L-TYROSINE (FET) PET COMPARED TO MRI IN MALIGNANT GLIOMAS TREATED WITH ADJUVANT TEMOZOLOMIDE CHEMOTHERAPY. Neuro-Oncology, 2018, 20, vi193-vi193.	1.2	2
264	Bolus infusion scheme for the adjustment of steady state [11C]Flumazenil levels in the grey matter and in the blood plasma for neuroreceptor imaging. NeuroImage, 2020, 221, 117160.	4.2	2
265	Predicting experimental success: A retrospective case-control study using the rat intraluminal thread model of stroke. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	2
266	A Linearized Fit Model for Robust Shape Parameterization of FET-PET TACs. IEEE Transactions on Medical Imaging, 2021, 40, 1-1.	8.9	2
267	Differential neural structures, intrinsic functional connectivity, and episodic memory in subjective cognitive decline and healthy controls. Neurobiology of Aging, 2021, 105, 159-173.	3.1	2
268	FET and FDOPA PET Imaging in Glioma. , 2020, , 211-221.		2
269	Post-stroke treatment with argon preserved neurons and attenuated microglia/macrophage activation long-termly in a rat model of transient middle cerebral artery occlusion (tMCAO). Scientific Reports, 2022, 12, 691.	3.3	2
270	The influence of image resolution on the positron emission tomographic measurement of caudate glucose consumption. European Journal of Nuclear Medicine and Molecular Imaging, 1993, 20, 753-8.	2.1	1

#	Article		Citations
271	PET Imaging of Brain Tumors. Medical Radiology, 2013, , 121-134.	0.1	1
272	Reply: Discriminating Ability of ¹⁸ F-FET PET for Several Cerebral Neoplastic Lesions. Journal of Nuclear Medicine, 2014, 55, 176.2-176.	5.0	1
273	NI-19 * THE USE OF DYNAMIC O-(2-[18F]fluoroethyl)-L-TYROSINE-PET IN THE CLINICAL EVALUATION OF BRAIN TUMORS IN CHILDREN AND ADOLESCENTS. Neuro-Oncology, 2014, 16, v142-v142.	1.2	1
274	Dynamic analysis of MR-PET data on brain tumors. EJNMMI Physics, 2014, 1, A56.	2.7	1
275	Brain connectivity study of brain tumor patients using MR-PET data: preliminary results. EJNMMI Physics, 2015, 2, A75.	2.7	1
276	Letter to the Editor: "Comparing the Volume of Brain Metastases in F-18-FET-PET and MRI― World Neurosurgery, 2016, 89, 722.	1.3	1
277	Reply: Flare Phenomenon in <i>$>$O</i> -(2-[¹⁸ F]-Fluoroethyl)-L-Tyrosine PET After Resection of Gliomas. Journal of Nuclear Medicine, 2020, 61, 1852-1852.	5.0	1
278	A Fast Protocol for Multiparametric Characterisation of Diffusion in the Brain and Brain Tumours. Frontiers in Oncology, 2021, 11, 554205.	2.8	1
279	Whole-body kinetics and dosimetry of I -3-[123 I]iodo-α-methyltyrosine. European Journal of Nuclear Medicine and Molecular Imaging, 1997, 24, 1162-1166.	6.4	1
280	Positron emission tomography imaging in diffuse intrinsic pontine glioma. Annals of Translational Medicine, 2017, 5, 312-312.	1.7	1
281	The role of 11C-methionine PET in patients with newly diagnosed WHO grade 2 or 3 gliomas. Neuro-Oncology, 2022, , .	1.2	1
282	Repeated amino acid PET imaging for longitudinal monitoring of brain tumors. Clinical and Translational Imaging, $0, \dots$	2.1	1
283	Performance measurement of a new high resolution detector system for I-131 thyroid studies. , 0, , .		0
284	Brain Tumors: Diagnostic Impact of PET Using Radiolabelled Amino Acids., 2011,, 117-126.		0
285	Sensitivity of intraoperative 5-aminolevulinic acid fluorescence compared with PET using O-(2-18F-fluoroethyl)-L-tyrosine to detect cerebral gliomas. Neurological Research, 2013, 35, 329-330.	1.3	0
286	Replay: Being Sensitive: to Specify When Amino Acid Tracers Accumulate in a Brain Lesion. Journal of Nuclear Medicine, 2013, 54, 826.2-827.	5.0	0
287	Adapting MR-BrainPET scans for comparison with conventional PET: experiences with dynamic FET-PET in brain tumours. EJNMMI Physics, 2014, 1, A64.	2.7	0
288	NIMG-28TREATMENT RESPONSE EVALUATION USING FET PET COMPARED TO STANDARD MRI IN GLIOBLASTOMA PATIENTS AT FIRST RECURRENCE TREATED WITH BEVACIZUMAB PLUS LOMUSTINE. Neuro-Oncology, 2015, 17, v159.4-v160.	1.2	0

#	‡ Article		IF	CITATIONS
28		u et al: Dynamic contrast-enhanced MRI perfusion versus ¹⁸ FDG g brain tumor progression from radiation injury. Neuro-Oncology, 2017, 19,	1.2	0
29		IAGE EVALUATION STUDY TO DETERMINE THE DIAGNOSTIC EFFICACY OF , AS AN ADJUNCT TO MRI IMAGING, IN ADULTS WITH GLIOMA. Neuro-Oncology, 2018,	1.2	0
29	Combined FET PET/ADC 313-314.	mapping: improved imaging of glioma infiltration?. Neuro-Oncology, 2020, 22,	1.2	0
29		owing newer treatment options: are companion diagnostics required in Review of Molecular Diagnostics, 2020, 20, 651-652.	3.1	0
29	lmaging of Response to Treatment Options in No	Radiosurgery and Immunotherapy in Brain Metastases: Quo Vadis?. Current eurology, 2021, 23, 1.	1.8	O
29	In Reply to the Letter to World Neurosurgery, 20	the Editor Regarding "18F-DOPA PET in Medulloblastoma: Two Case Reports― 021, 150, 255.	1.3	0
29	Clinical Evaluation of Pri Tomography. , 2011, , 1	imary Brain Tumor: O-(2-[18F]Fluorethyl)-L-Tyrosine Positron Emission 79-188.		0
29	296 Positron Emission Tomo	ography in Diffuse Low-Grade Gliomas. , 2013, , 235-248.		0
29	297 SPECT versus PET. , 199	5, , 237-247.		0
29	Effect of partial volume emission tomography in and Molecular Imaging,		6.4	0
29	The Role of Radionuclide 2020, 101, 221-234.	e Diagnostic Methods in Neuro-Oncology. Vestnik Rentgenologii I Radiologii,	0.2	0
30	NIMG-27. REGORAFENIB Neuro-Oncology, 2021,	3 RESPONSE ASSESSMENT USING FET PET IN PATIENTS WITH PROGRESSIVE GLIOMA. 23, vi134-vi134.	1.2	0
30	Case Report: Detection of Oligodendroglioma Usin	of Symptomatic Treatment-Related Changes in a Patient With Anaplastic ng FET PET. Frontiers in Oncology, 2021, 11, 735388.	2.8	0
30	Letter to the Editor: â€α A Radiomics Study―[J I	æ18F-FDOPA PET for the Noninvasive Prediction of Glioma Molecular Parameters: Nucl Med 2022; 63:147–157]. Journal of Nuclear Medicine, 2022, , jnumed.122.263837.	5.0	0