Antonio Buonerba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7708328/publications.pdf

Version: 2024-02-01

52 papers 1,682 citations

257450 24 h-index 289244 40 g-index

54 all docs

54 docs citations

54 times ranked 1852 citing authors

#	Article	IF	CITATIONS
1	Viruses in wastewater: occurrence, abundance and detection methods. Science of the Total Environment, 2020, 745, 140910.	8.0	170
2	Novel iron(<scp>iii</scp>) catalyst for the efficient and selective coupling of carbon dioxide and epoxides to form cyclic carbonates. Catalysis Science and Technology, 2015, 5, 118-123.	4.1	115
3	[OSSO]-Type Iron(III) Complexes for the Low-Pressure Reaction of Carbon Dioxide with Epoxides: Catalytic Activity, Reaction Kinetics, and Computational Study. ACS Catalysis, 2018, 8, 6882-6893.	11.2	103
4	Homogeneous Iron Catalysts in the Reaction of Epoxides with Carbon Dioxide. Advanced Synthesis and Catalysis, 2019, 361, 265-282.	4.3	82
5	Coupling of Carbon Dioxide with Epoxides Efficiently Catalyzed by Thioetherâ€Triphenolate Bimetallic Iron(III) Complexes: Catalyst Structureâ€"Reactivity Relationship and Mechanistic DFT Study. Advanced Synthesis and Catalysis, 2016, 358, 3231-3243.	4.3	74
6	Gold Nanoparticles Incarcerated in Nanoporous Syndiotactic Polystyrene Matrices as New and Efficient Catalysts for Alcohol Oxidations. Chemistry - A European Journal, 2012, 18, 709-715.	3.3	71
7	Highly efficient and selective reduction of nitroarenes into anilines catalyzed by gold nanoparticles incarcerated in a nanoporous polymer matrix: Role of the polymeric support and insight into the reaction mechanism. Journal of Catalysis, 2016, 340, 30-40.	6.2	64
8	Glycidol: an Hydroxylâ€Containing Epoxide Playing the Double Role of Substrate and Catalyst for CO ₂ Cycloaddition Reactions. ChemSusChem, 2016, 9, 3457-3464.	6.8	55
9	Advances in technological control of greenhouse gas emissions from wastewater in the context of circular economy. Science of the Total Environment, 2021, 792, 148479.	8.0	54
10	Aerobic Oxidation and Oxidative Esterification of 5â€Hydroxymethylfurfural by Gold Nanoparticles Supported on Nanoporous Polymer Host Matrix. ChemSusChem, 2018, 11, 3139-3149.	6.8	52
11	Coronavirus in water media: Analysis, fate, disinfection and epidemiological applications. Journal of Hazardous Materials, 2021, 415, 125580.	12.4	50
12	[OSSO]â€Type Fe(III) Metallate as Singleâ€Component Catalyst for the CO ₂ Cycloaddition to Epoxides. Advanced Synthesis and Catalysis, 2019, 361, 283-288.	4.3	49
13	Stereoselective polymerization of biosourced terpenes \hat{l}^2 -myrcene and \hat{l}^2 -ocimene and their copolymerization with styrene promoted by titanium catalysts. Polymer, 2017, 131, 151-159.	3.8	46
14	Highly Efficient Direct Aerobic Oxidative Esterification of Cinnamyl Alcohol with Alkyl Alcohols Catalysed by Gold Nanoparticles Incarcerated in a Nanoporous Polymer Matrix: A Tool for Investigating the Role of the Polymer Host. Chemistry - A European Journal, 2014, 20, 5478-5486.	3.3	42
15	Indoor versus outdoor transmission of SARS-COV-2: environmental factors in virus spread and underestimated sources of risk. Euro-Mediterranean Journal for Environmental Integration, 2021, 6, 30.	1.3	42
16	Wastewater treatment and fouling control in an electro algae-activated sludge membrane bioreactor. Science of the Total Environment, 2021, 786, 147475.	8.0	40
17	Crystalline Syndiotactic Polystyrene as Reinforcing Agent of cis-1,4-Polybutadiene Rubber. Macromolecules, 2010, 43, 367-374.	4.8	39
18	Poly(lactide-co-Îμ-caprolactone) copolymers prepared using bis-thioetherphenolate group 4 metal complexes: synthesis, characterization and morphology. RSC Advances, 2014, 4, 51262-51267.	3.6	39

#	Article	IF	CITATIONS
19	Innovative membrane photobioreactor for sustainable CO2 capture and utilization. Chemosphere, 2021, 273, 129682.	8.2	39
20	Binary Copolymerization of <i>p</i> -Methylstyrene with Butadiene and Isoprene Catalyzed by Titanium Compounds Showing Different Stereoselectivity. Macromolecules, 2013, 46, 8449-8457.	4.8	38
21	CO2 cycloaddition to epoxides promoted by bis-thioether-phenolate Fe(II) and Fe(III) complexes. Molecular Catalysis, 2018, 460, 46-52.	2.0	31
22	Novel Synthetic Strategy for the Sulfonation of Polybutadiene and Styrene–Butadiene Copolymers. Macromolecules, 2013, 46, 778-784.	4.8	27
23	Stereorigid OSSO-Type Group 4 Metal Complexes in the Ring-Opening Polymerization of <i>rac</i> -Lactide. Inorganic Chemistry, 2017, 56, 3447-3458.	4.0	27
24	Efficient and sustainable treatment of tannery wastewater by a sequential electrocoagulation-UV photolytic process. Journal of Water Process Engineering, 2020, 38, 101642.	5.6	27
25	Thioether-triphenolate bimetallic iron(<scp>iii</scp>) complexes as robust and highly efficient catalysts for cycloaddition of carbon dioxide to epoxides. Faraday Discussions, 2015, 183, 83-95.	3.2	23
26	One-Step Fabrication of Novel Polyethersulfone-Based Composite Electrospun Nanofiber Membranes for Food Industry Wastewater Treatment. Membranes, 2022, 12, 413.	3.0	23
27	Trends in Sustainable Synthesis of Organics by Gold Nanoparticles Embedded in Polymer Matrices. Catalysts, 2021, 11, 714.	3.5	19
28	Syndiotactic Polystyreneâ€∢i>blockàêPoly(methyl methacrylate) Copolymer via Click Chemistry. Macromolecular Chemistry and Physics, 2013, 214, 1990-1997.	2.2	18
29	Thioetherphenolate group 4 metal complexes in the ring opening polymerization of <i>rac</i> å€Î²â€Butyrolactone. Journal of Polymer Science Part A, 2016, 54, 3132-3139.	2.3	18
30	Olefin–Styrene Copolymers. Polymers, 2016, 8, 405.	4.5	16
31	A Comprehensive Depiction of the Furanâ€Maleimide Coupling via Kinetic and Thermodynamic Investigations of the Dielsâ€Alder Reaction of Poly(styrene– <i>co</i> àê£â€vinylfuran) with Maleimides. ChemistrySelect, 2017, 2, 1605-1612.	1.5	16
32	Novel nanostructured semicrystalline ionomers by chemoselective sulfonation of multiblock copolymers of syndiotactic polystyrene with polybutadiene. RSC Advances, 2014, 4, 60158-60167.	3.6	14
33	Dinuclear zirconium complex bearing a 1,5-bridged-calix[8]arene ligand as an effective catalyst for the synthesis of macrolactones. Catalysis Science and Technology, 2018, 8, 2716-2727.	4.1	14
34	Improvement of tensile properties, self-healing and recycle of thermoset styrene/2-vinylfuran copolymers via thermal triggered rearrangement of covalent crosslink. European Polymer Journal, 2018, 99, 368-377.	5.4	13
35	An integrated algal membrane photobioreactor as a green-transition technology for the carbon capture and utilization. Journal of Environmental Chemical Engineering, 2022, 10, 107344.	6.7	13
36	Highly efficient hydroamination of phenylacetylenes with anilines catalysed by gold nanoparticles embedded in nanoporous polymer matrix: Insight into the reaction mechanism by kinetic and DFT investigations. Journal of Catalysis, 2021, 400, 71-82.	6.2	12

#	Article	IF	CITATIONS
37	NIR multiphoton ablation of cancer cells, fluorescence quenching and cellular uptake of dansyl-glutathione-coated gold nanoparticles. Scientific Reports, 2020, 10, 11380.	3.3	11
38	Full-Scale Odor Abatement Technologies in Wastewater Treatment Plants (WWTPs): A Review. Water (Switzerland), 2021, 13, 3503.	2.7	11
39	Fabrication of polyethersulfone/polyacrylonitrile electrospun nanofiber membrane for food industry wastewater treatment. Journal of Water Process Engineering, 2022, 47, 102838.	5.6	11
40	Nanostructured ethylene–styrene copolymers. Polymer Chemistry, 2014, 5, 3045-3052.	3.9	10
41	Structure and dynamics of catalytically competent but labile paramagnetic metal-hydrides: the Ti(<scp>iii</scp>)-H in homogeneous olefin polymerization. Chemical Science, 2020, 11, 12436-12445.	7.4	10
42	Optimization of Classification Prediction Performances of an Instrumental Odour Monitoring System by Using Temperature Correction Approach. Chemosensors, 2021, 9, 147.	3.6	10
43	Innovative encapsulated self-forming dynamic bio-membrane bioreactor (ESFDMBR) for efficient wastewater treatment and fouling control. Science of the Total Environment, 2022, 805, 150296.	8.0	9
44	Production of Sustainable Biochemicals by Means of Esterification Reaction and Heterogeneous Acid Catalysts. ChemEngineering, 2021, 5, 46.	2.4	7
45	Polymerization of ethylene and propylene promoted by group 4 metal complexes bearing thioetherphenolate ligands. Polymer Chemistry, 2015, 6, 4657-4668.	3.9	6
46	Green, Mild, and Efficient Friedel–Crafts Benzylation of Scarcely Reactive Arenes and Heteroarenes under Onâ€Water Conditions. ChemSusChem, 2019, 12, 1673-1683.	6.8	6
47	Phenylene-Bridged OSSO-Type Titanium Complexes in the Polymerization of Ethylene and Propylene. ACS Omega, 2018, 3, 11608-11616.	3 . 5	5
48	Thinâ€film nanostructure and polymer architecture in semicrystalline syndiotactic poly(<i>p</i> à€methylstyrene)–(<i>cis</i> â€1,4â€polybutadiene) multiblock copolymers. Polymer International, 2019, 68, 1681-1687.	3.1	3
49	Amino-functionalized mesoporous nano-silica/polyvinylidene fluoride composite as efficient ultrafiltration membrane., 0, 205, 63-75.		3
50	Gold Nanoparticles Supported on Poly(2,6â€dimethylâ€1,4â€phenylene oxide) as Robust, Selective and Costâ€Effective Catalyst for Aerobic Oxidation and Direct Oxidative Esterification of Alcohols. ChemCatChem, 2022, 14, .	3.7	3
51	7. Bio-sourced polyolefins. , 2015, , 165-196.		1
52	Synthesis and Characterization of Syndiotactic Polystyrene-Polyethylene Block Copolymer. Polymers, 2019, 11, 698.	4. 5	1