List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7708264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Versatile homeotropic liquid crystal alignment with tunable functionality prepared by one-step method. Journal of Colloid and Interface Science, 2022, 608, 2290-2297.	5.0	10
2	Enhanced Light Trapping and Charge Separation via Pyramidal Cu ₂ O/NiCo-LDH Photocathode for Efficient Water Splitting. ACS Applied Energy Materials, 2022, 5, 992-1001.	2.5	9
3	Carbon quantum dots in hard carbon: An approach to achieving PIB anodes with high potassium adsorption. Carbon, 2022, 189, 142-151.	5.4	19
4	A new strategy: fermi level control to realize 3D pyramidal NiCo-LDH/ReS ₂ /n-PSi as a high-performance photoanode for the oxygen evolution reaction. Journal of Materials Chemistry C, 2022, 10, 3848-3855.	2.7	4
5	Photo-Embossed Surface Relief Structures with Improved Aspect Ratios and Their Applications in Liquid Crystal Devices. Polymers, 2022, 14, 171.	2.0	1
6	Thermochromic Cholesteric Liquid Crystal Microcapsules with Cellulose Nanocrystals and a Melamine Resin Hybrid Shell. ACS Applied Materials & amp; Interfaces, 2022, 14, 4588-4597.	4.0	37
7	Carbon Dots Embedded in Cellulose Film: Programmable, Performance-Tunable, and Large-Scale Subtle Fluorescent Patterning by <i>in Situ</i> Laser Writing. ACS Nano, 2022, 16, 2910-2920.	7.3	21
8	Assembling Hollow Cactus-Like ZnO Nanorods with Dipole-Modified Graphene Nanosheets for Practical Room-Temperature Formaldehyde Sensing. ACS Applied Materials & Interfaces, 2022, 14, 13186-13195.	4.0	16
9	Controlling the Phase Behavior and Reflection of Main-Chain Cholesteric Oligomers Using a Smectic Monomer. International Journal of Molecular Sciences, 2022, 23, 3275.	1.8	3
10	Phototriggered Complex Motion by Programmable Construction of Light-Driven Molecular Motors in Liquid Crystal Networks. Journal of the American Chemical Society, 2022, 144, 6851-6860.	6.6	15
11	InN/InGaN Quantum Dot Abiotic One-Compartment Glucose Photofuel Cell: Power Supply and Sensing. ACS Omega, 2022, 7, 1437-1443.	1.6	3
12	Thermochromic Multicolored Photonic Coatings with Light Polarization- and Structural Color-Dependent Changes. ACS Applied Polymer Materials, 2022, 4, 537-545.	2.0	10
13	Versatile SrFeO for memristive neurons and synapses. Journal of Materiomics, 2022, 8, 967-975.	2.8	6
14	Sustainable and Versatile Superhydrophobic Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering, 2022, 10, 5939-5948.	3.2	36
15	Cellulose nanocrystal chiral photonic micro-flakes for multilevel anti-counterfeiting and identification. Chemical Engineering Journal, 2022, 446, 136630.	6.6	23
16	Electrochemical Exfoliation of Naturally Occurring Layered Mineral Stibnite (Sb ₂ S ₃) for Highly Sensitive and Fast Roomâ€Temperature Acetone Sensing. Advanced Materials Interfaces, 2022, 9, .	1.9	6
17	Photothermal Dual Passively Driven Liquid Crystal Smart Window. ACS Applied Materials & Interfaces, 2022, 14, 28301-28309.	4.0	30
18	Water- and Heat-Induced Crack-Healing of UCST-Type Poly(acrylamide- <i>co</i> -acrylonitrile) with Intrinsic Controllability and Reversibility. ACS Applied Polymer Materials, 2022, 4, 4860-4867.	2.0	2

#	Article	IF	CITATIONS
19	Effects of bright light and an afternoon nap on task performance depend on the cognitive domain. Journal of Sleep Research, 2021, 30, e13242.	1.7	4
20	Light-deformable dynamic surface fabricated by ink-jet printing. Soft Matter, 2021, 17, 748-757.	1.2	1
21	Vertically aligned InGaN nanowire arrays on pyramid textured Si (1 0 0): A 3D arrayed light trapping structure for photoelectrocatalytic water splitting. Chemical Engineering Journal, 2021, 406, 126757.	6.6	20
22	Highly Reproducible Fabrication of Perovskite Films with an Ultrawide Antisolvent Dripping Window for Largeâ€Scale Flexible Solar Cells. Solar Rrl, 2021, 5, .	3.1	16
23	Electroconvection in Zwitterionâ€Đoped Nematic Liquid Crystals and Application as Smart Windows. Advanced Optical Materials, 2021, 9, 2001465.	3.6	32
24	4D Chiral Photonic Actuators with Switchable Hyperâ€Reflectivity. Advanced Functional Materials, 2021, 31, 2007887.	7.8	45
25	Direct Growth of Oxygen Vacancy-Enriched Co ₃ O ₄ Nanosheets on Carbon Nanotubes for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 4419-4428.	4.0	55
26	Charge transfer driven by redox dye molecules on graphene nanosheets for room-temperature gas sensing. Nanoscale, 2021, 13, 18596-18607.	2.8	9
27	Strong self-trapping by deformation potential limits photovoltaic performance in bismuth double perovskite. Science Advances, 2021, 7, .	4.7	98
28	Anisotropic Piezoelectric Response from InGaN Nanowires with Spatially Modulated Composition and Topography over a Textured Si(100) Substrate. ACS Applied Materials & Interfaces, 2021, 13, 7517-7528.	4.0	3
29	Rapid Microwave-Assisted Synthesis of SnO ₂ Quantum Dots for Efficient Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 1887-1893.	2.5	37
30	Translating 2D Director Profile to 3D Topography in a Liquid Crystal Polymer. Advanced Science, 2021, 8, 2004749.	5.6	11
31	Inkless Rewritable Photonic Crystals Paper Enabled by a Light-Driven Azobenzene Mesogen Switch. ACS Applied Materials & Interfaces, 2021, 13, 12383-12392.	4.0	28
32	A realâ€ŧime touch control system design based on fieldâ€programmable gate array via optimizing Bresenham algorithm for electrowetting displays. Journal of the Society for Information Display, 2021, 29, 573-583.	0.8	5
33	Photoâ€responsive Helical Motion by Lightâ€Driven Molecular Motors in a Liquidâ€Crystal Network. Angewandte Chemie - International Edition, 2021, 60, 8251-8257.	7.2	49
34	Optical modeling of cellulose nanofibril self-assembled thin film with iridescence. Colloid and Polymer Science, 2021, 299, 1139.	1.0	1
35	3D InGaN nanowire arrays on oblique pyramid-textured Si (311) for light trapping and solar water splitting enhancement. Nano Energy, 2021, 83, 105768.	8.2	19
36	Flow-Field-Assisted Dielectrophoretic Microchips for High-Efficiency Sheathless Particle/Cell Separation with Dual Mode. Analytical Chemistry, 2021, 93, 7606-7615.	3.2	6

#	Article	IF	CITATIONS
37	InGaN/Cu2O Heterostructure Core-Shell Nanowire Photoanode for Efficient Solar Water Splitting. Frontiers in Physics, 2021, 9, .	1.0	6
38	A Photovoltaic Selfâ€Powered Gas Sensor Based on Allâ€Dry Transferred MoS ₂ /GaSe Heterojunction for ppbâ€Level NO ₂ Sensing at Room Temperature. Advanced Science, 2021, 8, e2100472.	5.6	75
39	High-κ La2O3 as an anode modifier to reduce leakage current for efficient perovskite solar cells. Surfaces and Interfaces, 2021, 24, 101102.	1.5	3
40	Temperatureâ€Responsive Photonic Devices Based on Cholesteric Liquid Crystals. Advanced Photonics Research, 2021, 2, 2100016.	1.7	55
41	Bubble Manipulation Driven by Alternating Current Electrowetting: Oscillation Modes and Surface Detachment. Langmuir, 2021, 37, 6898-6904.	1.6	9
42	One-Compartment InGaN Nanowire Fuel Cell in the Light and Dark Operating Modes. ACS Omega, 2021, 6, 17464-17471.	1.6	3
43	3.1: Invited Paper: Electrowetting display: Towards fullâ€color video reflective display. Digest of Technical Papers SID International Symposium, 2021, 52, 59-63.	0.1	3
44	Tunable White Light-Emitting Devices Based on Unilaminar High-Efficiency Zn ²⁺ -Doped Blue CsPbBr ₃ Quantum Dots. Journal of Physical Chemistry Letters, 2021, 12, 8507-8512.	2.1	11
45	Comparison with Experiment, Model, and Simulation for Thermal Conductive Mechanism of Polymer Composites without Particle Network. Macromolecular Chemistry and Physics, 2021, 222, 2100200.	1.1	1
46	Direct ink writing of fluoropolymer/CNT-based superhydrophobic and corrosion-resistant electrodes for droplet energy harvesters and self-powered electronic skins. Nano Energy, 2021, 86, 106095.	8.2	33
47	Wearable Optical Sensing of Strain and Humidity: A Patterned Dualâ€Responsive Semiâ€Interpenetrating Network of a Cholesteric Mainâ€Chain Polymer and a Poly(ampholyte). Advanced Functional Materials, 2021, 31, 2104641.	7.8	33
48	Nematic Order, Plasmonic Switching and Selfâ€Patterning of Colloidal Gold Bipyramids. Advanced Science, 2021, 8, e2102854.	5.6	11
49	Ethylene Glycol Electrochemical Reforming Using Ruthenium Nanoparticle-Decorated Nickel Phosphide Ultrathin Nanosheets. ACS Applied Materials & Interfaces, 2021, 13, 42763-42772.	4.0	15
50	Influence of molecular weight on helical twisting power of oligomer chiral dopants. Journal of Molecular Liquids, 2021, 339, 116816.	2.3	4
51	Reversible Thermochromic Photonic Coatings with a Protective Topcoat. ACS Applied Materials & Interfaces, 2021, 13, 3153-3160.	4.0	34
52	Practical room temperature formaldehyde sensing based on a combination of visible-light activation and dipole modification. Journal of Materials Chemistry A, 2021, 9, 23955-23967.	5.2	16
53	Multi-Chromophore Dyes for Improving Light Stability of Electro-Fluidic Displays. Frontiers in Physics, 2021, 9, .	1.0	1
54	Programmable Control of Twoâ€Phase Fluid Interface Relative Motion in Electrowetting Device. Advanced Materials Interfaces, 2021, 8, 2101086.	1.9	6

#	Article	IF	CITATIONS
55	Understanding the effect of antisolvent on processing window and efficiency for large-area flexible perovskite solar cells. Materials Today Physics, 2021, 21, 100565.	2.9	9
56	Graphene-based Room Temperature Gas Sensing Materials. Current Chinese Science, 2021, 1, 98-114.	0.2	2
57	A Sleep Stage Classification Algorithm of Wearable System Based on Multiscale Residual Convolutional Neural Network. Journal of Sensors, 2021, 2021, 1-10.	0.6	5
58	Three-Dimensional Graphene-Based Foams with "Greater Electron Transferring Areas―Deriving High Gas Sensitivity. ACS Applied Nano Materials, 2021, 4, 13234-13245.	2.4	6
59	Configuration-Controllable Polymeric Nanovehicles Self-Assembled in Pixel Grids under an Electric Field. ACS Applied Materials & Interfaces, 2020, 12, 4052-4060.	4.0	Ο
60	Dopant-free F-substituted benzodithiophene copolymer hole-transporting materials for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 1858-1864.	5.2	49
61	A Patterned Mechanochromic Photonic Polymer for Reversible Image Reveal. Advanced Materials Interfaces, 2020, 7, 1901878.	1.9	50
62	A portable driving system for highâ€resolution active matrix electrowetting display based on FPGA. Journal of the Society for Information Display, 2020, 28, 287-296.	0.8	9
63	Novel perylene-based organic dyes for electro-fluidic displays. New Journal of Chemistry, 2020, 44, 415-421.	1.4	5
64	Stable Triple Cation Perovskite Precursor for Highly Efficient Perovskite Solar Cells Enabled by Interaction with 18C6 Stabilizer. Advanced Functional Materials, 2020, 30, 1908613.	7.8	65
65	Electrically Controlled Localized Charge Trapping at Amorphous Fluoropolymer–Electrolyte Interfaces. Small, 2020, 16, e1905726.	5.2	41
66	Oil Conductivity, Electric-Field-Induced Interfacial Charge Effects, and Their Influence on the Electro-Optical Response of Electrowetting Display Devices. Micromachines, 2020, 11, 702.	1.4	6
67	Cu2O as hole injection layer on In-rich InGaN nanowires. Journal of Applied Physics, 2020, 128, .	1.1	6
68	Impedance analysis of oil conductivity and pixel non-uniformity in electrowetting displays. Results in Physics, 2020, 18, 103223.	2.0	5
69	Fluorinated interfacial layers in perovskite solar cells: efficient enhancement of the fill factor. Journal of Materials Chemistry A, 2020, 8, 16527-16533.	5.2	17
70	Uniform honeycomb CNT-microparticles prepared via droplet-microfluidics and sacrificial nanoparticles for electrochemical determination of methyl parathion. Sensors and Actuators B: Chemical, 2020, 321, 128517.	4.0	28
71	Field-Induced Wettability Gradients for No-Loss Transport of Oil Droplets on Slippery Surfaces. ACS Applied Materials & Interfaces, 2020, 12, 38723-38729.	4.0	23
72	Enhanced Ferroelectric Properties and Insulator–Metal Transition-Induced Shift of Polarization-Voltage Hysteresis Loop in VO <i>_x</i> -Capped Hf _{0.5} Zr _{0.5} O ₂ Thin Films. ACS Applied Materials & Interfaces, 2020, 12, 40510-40517.	4.0	21

#	Article	IF	CITATIONS
73	Localized Liquid Secretion from a Photopatterned Liquid-Crystal Polymer Skin. ACS Applied Polymer Materials, 2020, 2, 4071-4077.	2.0	10
74	All-Dry Transferred ReS ₂ Nanosheets for Ultrasensitive Room-Temperature NO ₂ Sensing under Visible Light Illumination. ACS Sensors, 2020, 5, 3172-3181.	4.0	34
75	<i>In Situ</i> Construction of the Coral-like Polyaniline on the Aligned Silicon Nanowire Arrays for Silicon Substrate On-chip Supercapacitors. ACS Applied Energy Materials, 2020, 3, 11792-11802.	2.5	15
76	Driving Waveform Design of Electrophoretic Display Based on Optimized Particle Activation for a Rapid Response Speed. Micromachines, 2020, 11, 498.	1.4	20
77	Electric dipole of InN/InGaN quantum dots and holes and giant surface photovoltage directly measured by Kelvin probe force microscopy. Scientific Reports, 2020, 10, 5930.	1.6	10
78	Janus Nanoparticles with Tunable Amphiphilicity for Stabilizing Pickering-Emulsion Droplets via Assembly Behavior at Oil–Water Interfaces. ACS Applied Materials & Interfaces, 2020, 12, 26374-26383.	4.0	26
79	Photonic Thin Films Assembled from Amphiphilic Cellulose Nanofibrils Displaying Iridescent Full-Colors. ACS Applied Bio Materials, 2020, 3, 4522-4530.	2.3	2
80	An InGaN/SiNx/Si Uniband Diode. Journal of Electronic Materials, 2020, 49, 3577-3582.	1.0	8
81	Multilevel Spherical Photonic Crystals with Controllable Structures and Structureâ€Enhanced Functionalities. Advanced Optical Materials, 2020, 8, 1902164.	3.6	16
82	Driving Waveform Design of Electrowetting Displays Based on an Exponential Function for a Stable Grayscale and a Short Driving Time. Micromachines, 2020, 11, 313.	1.4	31
83	Modeling of Oil/Water Interfacial Dynamics in Three-Dimensional Bistable Electrowetting Display Pixels. ACS Omega, 2020, 5, 5326-5333.	1.6	6
84	Synergy of CO2-response and aggregation induced emission in a small molecule: renewable liquid and solid CO2 chemosensors with high sensitivity and visibility. Analyst, The, 2020, 145, 3528-3534.	1.7	5
85	The relationship between hole size and the voltage-driven formation of surface structures in an ITO/liquid crystal polymer/perforated metal electrode system. Journal of Physics and Chemistry of Solids, 2020, 141, 109418.	1.9	2
86	Polymer Stabilized Cholesteric Liquid Crystal Siloxane for Temperature-Responsive Photonic Coatings. International Journal of Molecular Sciences, 2020, 21, 1803.	1.8	30
87	Multi-wavelength light emission from InGaN nanowires on pyramid-textured Si(100) substrate grown by stationary plasma-assisted molecular beam epitaxy. Nanoscale, 2020, 12, 8836-8846.	2.8	6
88	Surface-Induced 2D/1D Heterostructured Growth of ReS ₂ /CoS ₂ for High-Performance Electrocatalysts. ACS Applied Materials & Interfaces, 2020, 12, 33586-33594.	4.0	30
89	Charge Trappingâ€Based Electricity Generator (CTEG): An Ultrarobust and High Efficiency Nanogenerator for Energy Harvesting from Water Droplets. Advanced Materials, 2020, 32, e2001699. ———————————————————————————————————	11.1	99
90	Building a smart surface with converse temperature-dependent wettability based on poly(acrylamide- <i>co</i> -acrylonitrile). Chemical Communications, 2020, 56, 2837-2840.	2.2	18

#	Article	IF	CITATIONS
91	S,N-Codoped oil-soluble fluorescent carbon dots for a high color-rendering WLED. Journal of Materials Chemistry C, 2020, 8, 4343-4349.	2.7	47
92	Three-Dimensional Mechanistic Modeling of Gate Leakage Current in High- κ MOSFETs. Physical Review Applied, 2020, 13, .	1.5	4
93	Microfluidic-Assisted Fabrication of Monodisperse Core–Shell Microcapsules for Pressure-Sensitive Adhesive with Enhanced Performance. Nanomaterials, 2020, 10, 274.	1.9	11
94	Synthesis and a Photo-Stability Study of Organic Dyes for Electro-Fluidic Display. Micromachines, 2020, 11, 81.	1.4	11
95	Hierarchical Defective Fe _{3â€} <i>_x</i> C@C Hollow Microsphere Enables Fast and Longâ€Lasting Lithium–Sulfur Batteries. Advanced Functional Materials, 2020, 30, 2001165.	7.8	144
96	Nanoscale Phase Mixture and Multifield-Induced Topotactic Phase Transformation in SrFeO _x . ACS Applied Materials & Interfaces, 2020, 12, 21883-21893.	4.0	19
97	Comparison of the Extended Gate Field-Effect Transistor with Direct Potentiometric Sensing for Super-Nernstian InN/InGaN Quantum Dots. ACS Omega, 2020, 5, 32800-32805.	1.6	16
98	Lithium–Sulfur Batteries: Hierarchical Defective Fe _{3â€} <i>_x</i> C@C Hollow Microsphere Enables Fast and Long‣asting Lithium–Sulfur Batteries (Adv. Funct. Mater. 22/2020). Advanced Functional Materials, 2020, 30, .	7.8	1
99	Multifunctionalized Microscale Ultrasound Contrast Agents for Precise Theranostics of Malignant Tumors. Contrast Media and Molecular Imaging, 2019, 2019, 1-18.	0.4	10
100	Electrocatalytic activity of InN/InGaN quantum dots. Electrochemistry Communications, 2019, 106, 106514.	2.3	12
101	Role of Electron–Phonon Coupling in the Thermal Evolution of Bulk Rashba-Like Spin-Split Lead Halide Perovskites Exhibiting Dual-Band Photoluminescence. ACS Energy Letters, 2019, 4, 2205-2212.	8.8	58
102	Construction of particle network for ultrahigh permittivity of dielectric polymer composite toward energy devices: A molecular dynamics study. Nano Energy, 2019, 64, 103985.	8.2	22
103	All-Inorganic Flexible Ba _{0.67} Sr _{0.33} TiO ₃ Thin Films with Excellent Dielectric Properties over a Wide Range of Frequencies. ACS Applied Materials & Interfaces, 2019, 11, 27088-27097.	4.0	32
104	Stable Copper Tin Sulfide Nanoflower Modified Carbon Quantum Dots for Improved Supercapacitors. Journal of Chemistry, 2019, 2019, 1-5.	0.9	9
105	Allâ€Solutionâ€Processed Micro/Nanowires with Electroplate Welding as Transparent Conducting Electrodes. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1970027.	1.2	2
106	Unassisted water splitting with 9.3% efficiency by a single quantum nanostructure photoelectrode. International Journal of Hydrogen Energy, 2019, 44, 19650-19657.	3.8	13
107	Microencapsulation of Phase Change Materials with Polystyrene/Cellulose Nanocrystal Hybrid Shell via Pickering Emulsion Polymerization. ACS Sustainable Chemistry and Engineering, 2019, 7, 17756-17767.	3.2	84
108	Cholesteric Flakes in Motion Driven by the Elastic Force from Nematic Liquid Crystals. ACS Applied Materials & Materials & Amp; Interfaces, 2019, 11, 40916-40922.	4.0	6

Сиоғи **Z**нои

#	Article	IF	CITATIONS
109	Spatial Surface Charge Engineering for Electrochemical Electrodes. Scientific Reports, 2019, 9, 14489.	1.6	6
110	Excellent Ferroelectric Properties of Hf _{0.5} Zr _{0.5} O ₂ Thin Films Induced by Al ₂ O ₃ Dielectric Layer. IEEE Electron Device Letters, 2019, 40, 1937-1940.	2.2	49
111	Nanoscale Topotactic Phase Transformation in SrFeO <i>_x</i> Epitaxial Thin Films for Highâ€Đensity Resistive Switching Memory. Advanced Materials, 2019, 31, e1903679.	11.1	58
112	Synergy of CO ₂ Response and Aggregation-Induced Emission in a Block Copolymer: A Facile Way To "See―Cancer Cells. ACS Applied Materials & Interfaces, 2019, 11, 37077-37083.	4.0	23
113	Preparation of an Interpenetrating Network of a Poly(ampholyte) and a Cholesteric Polymer and Investigation of Its Hydrochromic Properties. ACS Applied Materials & Interfaces, 2019, 11, 36044-36051.	4.0	17
114	Large-Area High-Contrast Hydrophobic/Hydrophilic Patterned Surface for Robust Electrowetting Devices. ACS Applied Nano Materials, 2019, 2, 1018-1026.	2.4	10
115	Solventâ€Assisted Lowâ€Temperature Crystallization of SnO ₂ Electronâ€Transfer Layer for Highâ€Efficiency Planar Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900557.	7.8	59
116	Interfacial Complexation Induced Controllable Fabrication of Stable Polyelectrolyte Microcapsules Using All-Aqueous Droplet Microfluidics for Enzyme Release. ACS Applied Materials & Interfaces, 2019, 11, 21227-21238.	4.0	38
117	Dye-Doped Electrically Smart Windows Based on Polymer-Stabilized Liquid Crystal. Polymers, 2019, 11, 694.	2.0	56
118	Microfluidics Assisted Fabrication of Three-Tier Hierarchical Microparticles for Constructing Bioinspired Surfaces. ACS Nano, 2019, 13, 3638-3648.	7.3	37
119	Allâ€Solutionâ€Processed Micro/Nanowires with Electroplate Welding as Transparent Conducting Electrodes. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900010.	1.2	6
120	Core–Shell MoS ₂ @CoO Electrocatalyst for Water Splitting in Neural and Alkaline Solutions. Journal of Physical Chemistry C, 2019, 123, 5833-5839.	1.5	38
121	Aperture Ratio Improvement by Optimizing the Voltage Slope and Reverse Pulse in the Driving Waveform for Electrowetting Displays. Micromachines, 2019, 10, 862.	1.4	22
122	Nondestructive Transfer Strategy for High-Efficiency Flexible Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 47003-47007.	4.0	11
123	A Driving System for Fast and Precise Gray-Scale Response Based on Amplitude–Frequency Mixed Modulation in TFT Electrowetting Displays. Micromachines, 2019, 10, 732.	1.4	31
124	Polymer Stabilized Liquid Crystal Smart Window with Flexible Substrates Based on Low-Temperature Treatment of Polyamide Acid Technology. Polymers, 2019, 11, 1869.	2.0	18
125	Assembly with copper(<scp>ii</scp>) ions and D–π–A molecules on a graphene surface for ultra-fast acetic acid sensing at room temperature. RSC Advances, 2019, 9, 30432-30438.	1.7	10
126	Quantum dot activated indium gallium nitride on silicon as photoanode for solar hydrogen generation. Communications Chemistry, 2019, 2, .	2.0	22

#	Article	IF	CITATIONS
127	Ion Beam Defect Engineering on ReS ₂ /Si Photocathode with Significantly Enhanced Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2019, 6, 1801663.	1.9	22
128	Effects of a short midday nap on habitual nappers' alertness, mood and mental performance across cognitive domains. Journal of Sleep Research, 2019, 28, e12638.	1.7	19
129	Flexible thermal responsive infrared reflector based on cholesteric liquid crystals and polymer stabilized cholesteric liquid crystals. Optics Express, 2019, 27, 13516.	1.7	31
130	Mimicking a Dog's Nose: Scrolling Graphene Nanosheets. ACS Nano, 2018, 12, 2521-2530.	7.3	78
131	Electrowetting on dielectric: experimental and model study of oil conductivity on rupture voltage. Journal Physics D: Applied Physics, 2018, 51, 195102.	1.3	19
132	Lightâ€Driven Electrohydrodynamic Instabilities in Liquid Crystals. Advanced Functional Materials, 2018, 28, 1707436.	7.8	35
133	Ultrathin Alumina Mask-Assisted Nanopore Patterning on Monolayer MoS ₂ for Highly Catalytic Efficiency in Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 8026-8035.	4.0	55
134	One-step chemical vapor deposition of MoS ₂ nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production. Nanoscale, 2018, 10, 3518-3525.	2.8	57
135	Influence of fluoropolymer surface wettability on electrowetting display performance. Displays, 2018, 53, 47-53.	2.0	24
136	Allâ€Solutionâ€Processed, Scalable, Selfâ€Cracking Ag Network Transparent Conductor. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700504.	0.8	11
137	Flexible Freestanding Carbon Nanofiber-Embedded TiO ₂ Nanoparticles as Anode Material for Sodium-Ion Batteries. Scanning, 2018, 2018, 1-7.	0.7	3
138	Highly oriented and ordered microstructures in block copolymer films. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1369-1375.	2.4	3
139	Nanoid Canyons On-Demand: Electrically Switchable Surface Topography in Liquid Crystal Networks. ACS Applied Materials & Interfaces, 2018, 10, 37743-37748.	4.0	9
140	Asymmetrical Electrowetting on Dielectrics Induced by Charge Transfer through an Oil/Water Interface. Langmuir, 2018, 34, 11943-11951.	1.6	10
141	Synthesis and application of an alkylated pyrazoleâ€based azo dye for electrofluidic display. Journal of the Society for Information Display, 2018, 26, 369-375.	0.8	8
142	Effects of Afternoon Nap Deprivation on Adult Habitual Nappers' Inhibition Functions. BioMed Research International, 2018, 2018, 1-9.	0.9	7
143	An easily coatable temperature responsive cholesteric liquid crystal oligomer for making structural colour patterns. Journal of Materials Chemistry C, 2018, 6, 7184-7187.	2.7	72
144	Improving Electrophoretic Particle Motion Control in Electrophoretic Displays by Eliminating the Fringing Effect via Driving Waveform Design. Micromachines, 2018, 9, 143.	1.4	28

#	Article	IF	CITATIONS
145	Quartz Microcrystal-Hybridized Organosilicone Encapsulant with Enhanced Optical and Thermal Performances. Polymers, 2018, 10, 84.	2.0	2
146	Contactless Control of Local Surface Buckling in Photoaligned Gold/Liquid Crystal Polymer Bilayers. Langmuir, 2018, 34, 10543-10549.	1.6	6
147	Molecular alignment, large surface deformations and hysteresis effects in polydomain LC polymer films under an in-plane DC electric field. Journal of Physics and Chemistry of Solids, 2018, 122, 36-40.	1.9	4
148	High Efficiency Hydrodynamic DNA Fragmentation in a Bubbling System. Scientific Reports, 2017, 7, 40745.	1.6	8
149	Microfluidic fabrication of responsive hierarchical microscale particles from macroscale materials and nanoscale particles. Sensors and Actuators B: Chemical, 2017, 247, 78-91.	4.0	23
150	Continuous fabrication of microcapsules with controllable metal covered nanoparticle arrays using droplet microfluidics for localized surface plasmon resonance. Lab on A Chip, 2017, 17, 1970-1979.	3.1	33
151	38â€l: <i>Invited Paper</i> : Recent Progress in Video Electronic Paper Displays based on Electroâ€fluidic Technology. Digest of Technical Papers SID International Symposium, 2017, 48, 535-538.	0.1	5
152	A Practical ITO Replacement Strategy: Sputteringâ€Free Processing of a Metallic Nanonetwork. Advanced Materials Technologies, 2017, 2, 1700061.	3.0	39
153	Three-Dimensional Crumpled Graphene-Based Nanosheets with Ultrahigh NO ₂ Gas Sensibility. ACS Applied Materials & Interfaces, 2017, 9, 11819-11827.	4.0	88
154	Improvement of video playback performance of electrophoretic displays by optimized waveforms with shortened refresh time. Displays, 2017, 49, 95-100.	2.0	31
155	Easily Processable Temperature-Responsive Infrared-Reflective Polymer Coatings. ACS Omega, 2017, 2, 3475-3482.	1.6	30
156	Large-Area and High-Throughput PDMS Microfluidic Chip Fabrication Assisted by Vacuum Airbag Laminator. Micromachines, 2017, 8, 218.	1.4	7
157	Forming Spacers in Situ by Photolithography to Mechanically Stabilize Electrofluidic-Based Switchable Optical Elements. Materials, 2016, 9, 250.	1.3	8
158	Coating and Patterning Functional Materials for Large Area Electrofluidic Arrays. Materials, 2016, 9, 707.	1.3	13
159	Interfacial electrofluidics in confined systems. Scientific Reports, 2016, 6, 26593.	1.6	27
160	Imidazolium ionic liquid induced one-step synthesis of ?-Fe2O3 nanorods and nanorod assemblies for lithium-ion battery. APL Materials, 2016, 4, .	2.2	6
161	Two-phase microfluidics in electrowetting displays and its effect on optical performance. Biomicrofluidics, 2016, 10, 011908.	1.2	35
162	Colossal Figure of Merit in Transparentâ€Conducting Metallic Ribbon Networks. Advanced Materials Technologies, 2016, 1, .	3.0	29

#	Article	IF	CITATIONS
163	Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics. Nature Communications, 2016, 7, 12825.	5.8	46
164	Optical integrated chips with micro and nanostructures for refractive index and SERS-based optical label-free sensing. Nanophotonics, 2015, 4, 419-436.	2.9	11
165	A novel driver for active matrix electrowetting displays. Displays, 2015, 37, 86-93.	2.0	38
166	Screen-printing fabrication of electrowetting displays based on poly(imide siloxane) and polyimide. Displays, 2015, 37, 79-85.	2.0	25
167	REVIEW OF PAPER-LIKE DISPLAY TECHNOLOGIES (Invited Review). Progress in Electromagnetics Research, 2014, 147, 95-116.	1.6	71
168	Microfluidics for electronic paper-like displays. Lab on A Chip, 2014, 14, 2374-2384.	3.1	47