Georgina C Laredo

List of Publications by Citations

Source: https://exaly.com/author-pdf/7708235/georgina-c-laredo-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

40 986 17 31 g-index

40 1,082 5 4.2 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
40	Denitrogenation of middle distillates using adsorbent materials towards ULSD production: A review. Fuel Processing Technology, 2013, 106, 21-32	7.2	103
39	Inhibition effects of nitrogen compounds on the hydrodesulfurization of dibenzothiophene. <i>Applied Catalysis A: General</i> , 2001 , 207, 103-112	5.1	103
38	Nitrogen compounds characterization in atmospheric gas oil and light cycle oil from a blend of Mexican crudes. <i>Fuel</i> , 2002 , 81, 1341-1350	7.1	98
37	Naphthenic acids, total acid number and sulfur content profile characterization in Isthmus and Maya crude oils. <i>Fuel</i> , 2004 , 83, 1689-1695	7.1	68
36	Inhibition effects of nitrogen compounds on the hydrodesulfurization of dibenzothiophene: Part 2. <i>Applied Catalysis A: General</i> , 2003 , 243, 207-214	5.1	66
35	Oxidative desulfurization of diesel using promising heterogeneous tungsten catalysts and hydrogen peroxide. <i>Fuel</i> , 2014 , 138, 118-125	7.1	55
34	Molecular size evaluation of linear and branched paraffins from the gasoline pool by DFT quantum chemical calculations. <i>Fuel</i> , 2004 , 83, 2183-2188	7.1	45
33	Inhibition effects observed between dibenzothiophene and carbazole during the hydrotreating process. <i>Applied Catalysis A: General</i> , 2004 , 265, 171-183	5.1	40
32	High quality diesel by hydrotreating of atmospheric gas oil/light cycle oil blends. <i>Fuel</i> , 2004 , 83, 1381-1	13891	34
31	Light Cycle Oil Upgrading to Benzene, Toluene, and Xylenes by Hydrocracking: Studies Using Model Mixtures. <i>Industrial & Discounty Engineering Chemistry Research</i> , 2017 , 56, 10939-10948	3.9	32
30	Identification of Naphthenic Acids and Other Corrosivity-Related Characteristics in Crude Oil and Vacuum Gas Oils from a Mexican Refinery. <i>Energy & Dougle Supply</i> 2004, 18, 1687-1694	4.1	30
29	Light Cycle Oil Upgrading to High Quality Fuels and Petrochemicals: A Review. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 7315-7321	3.9	29
28	Synthesis of ionic liquids and their use for extracting nitrogen compounds from gas oil feeds towards diesel fuel production. <i>Fuel Processing Technology</i> , 2015 , 130, 38-45	7.2	27
27	Comparison of the metal [®] rganic framework MIL-101 (Cr) versus four commercial adsorbents for nitrogen compounds removal in diesel feedstocks. <i>Fuel</i> , 2016 , 180, 284-291	7.1	23
26	Direct neural network modeling for separation of linear and branched paraffins by adsorption process for gasoline octane number improvement. <i>Fuel</i> , 2014 , 124, 158-167	7.1	22
25	Effect of nitrogen compounds in the hydrodesulfurization of straight-run gas oil using a CoMoP/g-Al2O3 catalyst. <i>Fuel</i> , 2014 , 138, 98-103	7.1	21
24	Self-inhibition observed during indole and o-ethylaniline hydrogenation in the presence of dibenzothiophene. <i>Applied Catalysis A: General</i> , 2003 , 242, 311-320	5.1	20

23	Octane enhancement by the selective separation of branched and linear paraffins in naphthas using a PVDC-PVC carbon molecular sieve. <i>Fuel</i> , 2014 , 117, 660-666	7.1	17	
22	Benzene reduction in gasoline by alkylation with olefins: Comparison of Beta and MCM-22 catalysts. <i>Applied Catalysis A: General</i> , 2012 , 413-414, 140-148	5.1	16	
21	Adsorption Equilibrium and Kinetics of Branched Octane Isomers on a Polyvinylidene Chloride-Based Carbon Molecular Sieve. <i>Energy & Energy & Energy</i>	4.1	16	
20	Benzene reduction in gasoline by alkylation with propylene over MCM-22 zeolite with a different Brfisted/Lewis acidity ratios. <i>Applied Catalysis A: General</i> , 2013 , 454, 37-45	5.1	14	
19	Adsorption ofn-Heptane and 2-Methylheptane in the Gas Phase on Polyvinylidene Chloride-Based Microporous Activated Carbon. <i>Energy & Documents</i> , 2007, 21, 2929-2934	4.1	13	
18	Benzene reduction in gasoline by alkylation with olefins: Effect of the feedstock on the catalyst deactivation. <i>Applied Catalysis A: General</i> , 2009 , 363, 11-18	5.1	12	
17	Gas-phase diffusion of linear and multi-branched alkanes on a carbon molecular sieve by the ZLC method. <i>Separation and Purification Technology</i> , 2013 , 103, 36-42	8.3	11	
16	Dual-site Langmuir modeling of the liquid phase adsorption of linear and branched paraffins onto a PVDC carbon molecular sieve. <i>Fuel</i> , 2012 , 102, 404-413	7.1	9	
15	Benzene reduction in gasoline by olefin alkylation: Effect of the catalyst on a C6-reformate heart-cut. <i>Applied Catalysis A: General</i> , 2009 , 363, 19-26	5.1	9	
14	Benzene reduction in gasoline by alkylation with olefins: Effect of the experimental conditions on the product selectivity. <i>Applied Catalysis A: General</i> , 2010 , 384, 115-121	5.1	9	
13	Effect of the catalytic system and operating conditions on BTX formation using tetralin as a model molecule. <i>Applied Petrochemical Research</i> , 2019 , 9, 185-198	1.9	7	
12	Kinetics of hydrodesulfurization of dimethyldibenzothiophenes in a gas oil narrow-cut fraction and solvent effects. <i>Applied Catalysis A: General</i> , 2003 , 252, 295-304	5.1	7	
11	Benzene reduction in gasoline range streams by adsorption processes using a PVDCPVC carbon molecular sieve. <i>Fuel</i> , 2014 , 135, 459-467	7.1	6	
10	Effect of the experimental conditions on BTX formation from hydrotreated light cycle oil. <i>Applied Petrochemical Research</i> , 2020 , 10, 21-34	1.9	4	
9	Comparison of different molecular sieves for the liquid phase separation of linear and branched alkanes. <i>Fuel Processing Technology</i> , 2014 , 124, 258-266	7.2	4	
8	Alternate use of heavy hydrotreatment and visbreaker naphthas by incorporation into diesel. <i>Fuel Processing Technology</i> , 2007 , 88, 897-903	7.2	4	
7	Effect of the catalyst in the BTX production by hydrocracking of light cycle oil. <i>Applied Petrochemical Research</i> , 2021 , 11, 19-38	1.9	4	
6	Homogeneous catalyst for in-situ hydrotreating of heavy oils. <i>Applied Catalysis A: General</i> , 2019 , 577, 99-106	5.1	3	

5	Adsorption of nitrogen compounds from diesel fuels over alumina-based adsorbent towards ULSD production. <i>Petroleum Science and Technology</i> , 2017 , 35, 392-398	1.4	2
4	Selective hydrogenation of light cycle oil for BTX and gasoline production purposes. <i>International Journal of Chemical Reactor Engineering</i> , 2021 ,	1.2	1
3	Effect of the chemical composition of six hydrotreated light cycle oils for benzene, toluene, ethylbenzene, and xylene production by a hydrocracking process. <i>Applied Petrochemical Research</i> , 2021 , 11, 249-263	1.9	1
2	Nitrogen compounds removal from oil-derived middle distillates by MIL-101(Cr) and its impact on ULSD production by hydrotreating. <i>Oil and Gas Science and Technology</i> , 2021 , 76, 56	1.9	1
1	Upgrading of light cycle oil for ultra low sulphur diesel production by a solvent extraction procedure. <i>International Journal of Oil, Gas and Coal Technology</i> , 2019 , 22, 315	0.6	