Nikolay Brandt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7708151/publications.pdf Version: 2024-02-01

NIKOLAV RRANDT

#	Article	IF	CITATIONS
1	Influence of the measurement configuration on the results of Raman microspectroscopy of human hair. Quantum Electronics, 2022, 52, 36-41.	1.0	0
2	Comparison of vibrational spectra of proteins with similar secondary and different tertiary structures. Vibrational Spectroscopy, 2022, 120, 103375.	2.2	2
3	The problem of manifestation of tertiary structure in the vibrational spectra of proteins. Vibrational Spectroscopy, 2021, 114, 103250.	2.2	5
4	Raman microspectroscopy of fresco fragments from the Annunciation Church at Gorodishche at Veliky Novgorod. European Physical Journal Plus, 2021, 136, 1.	2.6	4
5	Raman and IR spectra and DFT calculations of potassium antimonyl silicate. Journal of Molecular Structure, 2019, 1193, 477-481.	3.6	4
6	Raman microspectroscopy of blueâ€green historical beads: Comparative study of undamaged and strongly degraded samples. Journal of Raman Spectroscopy, 2018, 49, 506-512.	2.5	6
7	Raman study of the cleavage of disulphide bonds in albumin, chymotrypsin, and thrombin. Vibrational Spectroscopy, 2017, 89, 75-80.	2.2	16
8	Photoinduced formation of thiols in human hair. Journal of Photochemistry and Photobiology B: Biology, 2016, 164, 43-48.	3.8	13
9	Raman microspectroscopy of nanodiamond-induced structural changes in albumin. Journal of Biomedical Optics, 2015, 20, 047004.	2.6	5
10	Raman Microspectroscopy of Old Paper Samples with Foxing. Applied Spectroscopy, 2014, 68, 495-501.	2.2	8
11	Laser ablation of paper: Raman identification of products. Applied Physics A: Materials Science and Processing, 2014, 117, 1865-1871.	2.3	5
12	Raman spectroscopy of albumin interaction with nanodiamond films. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2014, 69, 552-557.	0.4	0
13	Effect of thermal denaturation, inhibition, and cleavage of disulfide bonds on the low-frequency Raman and FTIR spectra of chymotrypsin and albumin. Journal of Biomedical Optics, 2014, 20, 051015.	2.6	10
14	Raman spectroscopy of disulfide bridges in thrombin. Biomedical Spectroscopy and Imaging, 2014, 3, 287-292.	1.2	16
15	Effect of Laser Radiation on 19th Century Paper. Restaurator, 2013, 34, .	0.2	0
16	Terahertz time-domain and FTIR spectroscopic study of interaction of α-chymotrypsin and protonated tris with 18-crown-6. Chemical Physics Letters, 2013, 560, 55-59.	2.6	12
17	Optoacoustic measurements of the porosity of paper samples with foxings. Applied Physics Letters, 2012, 101, 174101.	3.3	8
18	Terahertz time-domain and FTIR spectroscopy of tris-crown interaction. Chemical Physics Letters, 2012, 554, 201-207.	2.6	5

NIKOLAY BRANDT

#	Article	IF	CITATIONS
19	Terahertz time-domain and FTIR spectroscopy of tris and its complexes with crown ether. , 2012, , .		1
20	THz and IR Spectroscopy of Molecular Systems That Simulate Function-Related Structural Changes of Proteins. Spectroscopy, 2012, 27, 429-432.	0.8	4
21	IR spectroscopy of structural changes of α-chymotrypsin related to the changes of function in organic solvents. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo) Tj ETQq1 1 0.784314	ł rgB∓ /Ov	erløck 10 Tf 3
22	Variations in the IR spectra of yellow ochre due to mixing with binding medium and drying. Journal of Applied Spectroscopy, 2011, 78, 183-188.	0.7	4
23	Photobleaching as a method of increasing the accuracy in measuring carotenoid concentration in human skin by Raman spectroscopy. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq1 1 0.784	31 4.6 gBT	/ Ose rlock 10
24	Raman spectroscopy of the components of 18th-century icon painting. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2009, 64, 600-604.	0.4	2
25	ATR-FTIR and FT Raman spectroscopy and laser cleaning of old paper samples with foxings. Laser Physics, 2009, 19, 483-492.	1.2	15
26	Low-frequency vibrational motions in proteins: Physical mechanisms and effect on functioning. European Physical Journal B, 2008, 65, 419-424.	1.5	3
27	Terahertz time-domain and Raman spectroscopy of the sulfur-containing peptide dimers: Low-frequency markers of disulfide bridges. Vibrational Spectroscopy, 2008, 47, 53-58.	2.2	50
28	Laser Raman spectroscopy of the effect of solvent on the low-frequency oscillations of organic molecules. Laser Physics, 2007, 17, 1133-1137.	1.2	2
29	Laser control of the structure of a photosensitive substrate for enzymatic reaction. Laser Physics, 2007, 17, 1262-1265.	1.2	1
30	Optimization of the Rolling-Circle Filter for Raman Background Subtraction. Applied Spectroscopy, 2006, 60, 288-293.	2.2	116
31	Resolution of the time-resolved absorption spectra of three-component systems into spectral components and determination of transition constants. Laser Physics, 2006, 16, 1658-1663.	1.2	0
32	Terahertz time-domain spectroscopy and spectrochronography of amino acids and polypeptides. , 2006, , .		1
33	Terahertz Time-Domain and Raman Studies of Sulfur-Containing Polypeptides. , 2006, , .		0
34	Ricin, ricin agglutinin, and the ricin binding subunit structural comparison by Raman spectroscopy. Journal of Molecular Structure, 2005, 735-736, 293-298.	3.6	11
35	Photoinduced transformations of p-azido-benzo-18-crown-6. Chemical Physics Letters, 2005, 415, 79-84.	2.6	1
36	BROADBAND BACKGROUND IN RAMAN SPECTRA OF PROTEINS: DETERMINISTIC SIGNAL OR NOISE?. Fluctuation and Noise Letters, 2005, 05, L233-L241.	1.5	4

NIKOLAY BRANDT

#	Article	IF	CITATIONS
37	<title>Raman spectroscopic measurements of beta-carotene and lycopene in human skin</title> . , 2004, 5474, 20.		0
38	Raman spectroscopy of tris-(hydroxymethyl)aminomethane as a model system for the studies of α-chymotrypsin activation by crown ether in organic solvents. Journal of Molecular Structure, 2003, 648, 177-182.	3.6	10
39	Kinetics of photobleaching of aqueous solutions of ricin agglutinin in the presence of guanidine chloride. , 2002, 4749, 343.		0
40	Background photobleaching in raman spectra of aqueous solutions of plant toxins. , 2002, 4749, 349.		1
41	Conformational difference between ricin and ricin agglutinin in solution and crystal. Doklady Biochemistry and Biophysics, 2001, 376, 26-28.	0.9	7
42	CARS and Raman spectroscopy of function-related conformational changes of chymotrypsin. Journal of Raman Spectroscopy, 2000, 31, 731-737.	2.5	8