Nikolay Brandt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7708151/publications.pdf

Version: 2024-02-01

933447 794594 42 398 10 19 citations g-index h-index papers 42 42 42 537 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Optimization of the Rolling-Circle Filter for Raman Background Subtraction. Applied Spectroscopy, 2006, 60, 288-293.	2.2	116
2	Terahertz time-domain and Raman spectroscopy of the sulfur-containing peptide dimers: Low-frequency markers of disulfide bridges. Vibrational Spectroscopy, 2008, 47, 53-58.	2.2	50
3	Photobleaching as a method of increasing the accuracy in measuring carotenoid concentration in human skin by Raman spectroscopy. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq $1\ 1\ 0.7843$	3 1⁄4.6 gBT /	Oserlock 10
4	Raman spectroscopy of disulfide bridges in thrombin. Biomedical Spectroscopy and Imaging, 2014, 3, 287-292.	1.2	16
5	Raman study of the cleavage of disulphide bonds in albumin, chymotrypsin, and thrombin. Vibrational Spectroscopy, 2017, 89, 75-80.	2.2	16
6	ATR-FTIR and FT Raman spectroscopy and laser cleaning of old paper samples with foxings. Laser Physics, 2009, 19, 483-492.	1.2	15
7	Photoinduced formation of thiols in human hair. Journal of Photochemistry and Photobiology B: Biology, 2016, 164, 43-48.	3.8	13
8	Terahertz time-domain and FTIR spectroscopic study of interaction of \hat{l}_{\pm} -chymotrypsin and protonated tris with 18-crown-6. Chemical Physics Letters, 2013, 560, 55-59.	2.6	12
9	Ricin, ricin agglutinin, and the ricin binding subunit structural comparison by Raman spectroscopy. Journal of Molecular Structure, 2005, 735-736, 293-298.	3.6	11
10	Raman spectroscopy of tris-(hydroxymethyl)aminomethane as a model system for the studies of \hat{l}_{\pm} -chymotrypsin activation by crown ether in organic solvents. Journal of Molecular Structure, 2003, 648, 177-182.	3.6	10
11	Effect of thermal denaturation, inhibition, and cleavage of disulfide bonds on the low-frequency Raman and FTIR spectra of chymotrypsin and albumin. Journal of Biomedical Optics, 2014, 20, 051015.	2.6	10
12	CARS and Raman spectroscopy of function-related conformational changes of chymotrypsin. Journal of Raman Spectroscopy, 2000, 31, 731-737.	2.5	8
13	Optoacoustic measurements of the porosity of paper samples with foxings. Applied Physics Letters, 2012, 101, 174101.	3.3	8
14	Raman Microspectroscopy of Old Paper Samples with Foxing. Applied Spectroscopy, 2014, 68, 495-501.	2.2	8
15	Conformational difference between ricin and ricin agglutinin in solution and crystal. Doklady Biochemistry and Biophysics, 2001, 376, 26-28.	0.9	7
16	Raman microspectroscopy of blueâ€green historical beads: Comparative study of undamaged and strongly degraded samples. Journal of Raman Spectroscopy, 2018, 49, 506-512.	2.5	6
17	Terahertz time-domain and FTIR spectroscopy of tris-crown interaction. Chemical Physics Letters, 2012, 554, 201-207.	2.6	5
18	Laser ablation of paper: Raman identification of products. Applied Physics A: Materials Science and Processing, 2014, 117, 1865-1871.	2.3	5

#	Article	IF	Citations
19	Raman microspectroscopy of nanodiamond-induced structural changes in albumin. Journal of Biomedical Optics, 2015, 20, 047004.	2.6	5
20	The problem of manifestation of tertiary structure in the vibrational spectra of proteins. Vibrational Spectroscopy, 2021, 114, 103250.	2.2	5
21	BROADBAND BACKGROUND IN RAMAN SPECTRA OF PROTEINS: DETERMINISTIC SIGNAL OR NOISE?. Fluctuation and Noise Letters, 2005, 05, L233-L241.	1.5	4
22	Variations in the IR spectra of yellow ochre due to mixing with binding medium and drying. Journal of Applied Spectroscopy, 2011, 78, 183-188.	0.7	4
23	THz and IR Spectroscopy of Molecular Systems That Simulate Function-Related Structural Changes of Proteins. Spectroscopy, 2012, 27, 429-432.	0.8	4
24	Raman and IR spectra and DFT calculations of potassium antimonyl silicate. Journal of Molecular Structure, 2019, 1193, 477-481.	3.6	4
25	Raman microspectroscopy of fresco fragments from the Annunciation Church at Gorodishche at Veliky Novgorod. European Physical Journal Plus, 2021, 136, 1.	2.6	4
26	Low-frequency vibrational motions in proteins: Physical mechanisms and effect on functioning. European Physical Journal B, 2008, 65, 419-424.	1.5	3
27	IR spectroscopy of structural changes of α-chymotrypsin related to the changes of function in organic solvents. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo) Tj ETQq1 1 0.78431	4 rgB4 /Ov	erl s ck 10 Tf
28	Laser Raman spectroscopy of the effect of solvent on the low-frequency oscillations of organic molecules. Laser Physics, 2007, 17, 1133-1137.	1.2	2
29	Raman spectroscopy of the components of 18th-century icon painting. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2009, 64, 600-604.	0.4	2
30	Comparison of vibrational spectra of proteins with similar secondary and different tertiary structures. Vibrational Spectroscopy, 2022, 120, 103375.	2.2	2
31	Background photobleaching in raman spectra of aqueous solutions of plant toxins. , 2002, 4749, 349.		1
32	Photoinduced transformations of p-azido-benzo-18-crown-6. Chemical Physics Letters, 2005, 415, 79-84.	2.6	1
33	Terahertz time-domain spectroscopy and spectrochronography of amino acids and polypeptides. , 2006, , .		1
34	Laser control of the structure of a photosensitive substrate for enzymatic reaction. Laser Physics, 2007, 17, 1262-1265.	1.2	1
35	Terahertz time-domain and FTIR spectroscopy of tris and its complexes with crown ether., 2012,,.		1
36	Kinetics of photobleaching of aqueous solutions of ricin agglutinin in the presence of guanidine chloride., 2002, 4749, 343.		0

#	Article	IF	CITATIONS
37	<title>Raman spectroscopic measurements of beta-carotene and lycopene in human skin</title> ., 2004, 5474, 20.		O
38	Resolution of the time-resolved absorption spectra of three-component systems into spectral components and determination of transition constants. Laser Physics, 2006, 16, 1658-1663.	1.2	0
39	Terahertz Time-Domain and Raman Studies of Sulfur-Containing Polypeptides. , 2006, , .		0
40	Effect of Laser Radiation on 19th Century Paper. Restaurator, 2013, 34, .	0.2	0
41	Raman spectroscopy of albumin interaction with nanodiamond films. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2014, 69, 552-557.	0.4	0
42	Influence of the measurement configuration on the results of Raman microspectroscopy of human hair. Quantum Electronics, 2022, 52, 36-41.	1.0	0