
Alena FedoroÄkovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7707937/publications.pdf Version: 2024-02-01

ALENA FEDOROÄKOVÄ:

#	Article	IF	CITATIONS
1	Study of inhibiting effect of acid concentration on the dissolution rate of magnesium oxide during the leaching of dead-burned magnesite. Hydrometallurgy, 2004, 71, 403-412.	4.3	51
2	Effects of pH and acid anions on the dissolution kinetics of MgO. Chemical Engineering Journal, 2008, 143, 265-272.	12.7	41
3	Dissolution of magnesium from calcined serpentinite in hydrochloric acid. Minerals Engineering, 2012, 32, 1-4.	4.3	39
4	Dissolution kinetics of periclase in dilute hydrochloric acid. Chemical Engineering Science, 2008, 63, 576-586.	3.8	22
5	Thermal activation of serpentine prior to acid leaching. Hydrometallurgy, 2013, 139, 149-153.	4.3	18
6	Dissolution of periclase in excess of hydrochloric acid: Study of inhibiting effect of acid concentration on the dissolution rate. Chemical Engineering Journal, 2006, 117, 205-211.	12.7	15
7	Non-porous shrinking particle model of leaching at low liquid-to-solid ratio. Hydrometallurgy, 2019, 190, 105151.	4.3	11
8	Utilization of Chrysotile-Type Tailings for Synthesis of High-Grade Silica by Controlled Precipitation. Mineral Processing and Extractive Metallurgy Review, 2016, 37, 287-294.	5.0	8
9	Generalized shrinking particle model of leaching: Effect of the order of surface chemical reaction, liquid-to-solid ratio and non-ideal behaviour of the liquid phase. Hydrometallurgy, 2020, 196, 105441.	4.3	7
10	Characteristics of amorphous silica prepared from serpentinite using various acidifying agents. International Journal of Mineral Processing, 2014, 130, 42-47.	2.6	6
11	Simplified waste-free process for synthesis of nanoporous compact alumina under technologically advantageous conditions. RSC Advances, 2020, 10, 32423-32435.	3.6	5
12	Activated Zeolite and Magnesite as Potential Reactive Materials for Passive Acidic Groundwater Treatment Technology. Solid State Phenomena, 0, 244, 221-227.	0.3	4
13	Reactive, Sparingly Soluble Calcined Magnesia, Tailor-Made as the Reactive Material for Heavy Metal Removal from Contaminated Groundwater Using Permeable Reactive Barrier. Minerals (Basel,) Tj ETQq1 1 0.7843	81 4. œBT	/Oværlock 10
14	REMOVAL OF HEAVY METALS FROM WASTEWATER USING CAUSTIC CALCINED MAGNESIA. Acta Metallurgica Slovaca, 2015, 21, 247-252.	0.7	2
15	COMPARISON OF THE ABILITY OF LIMESTONE AND CONCRETE TO REMOVE HEAVY METAL IONS FROM CONTAMINATED WATER. Acta Metallurgica Slovaca, 2015, 21, 236.	0.7	2