
Hai-Ching Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7707906/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Emissive Red Heterobimetallic Ir ^{III} /M ^I (M ^I = Cu ^I) T Materials, 2022, 34, 1756-1769.	j ETQq1 1 0.78 6.7	84314 rgB 16
2	Purely organic pyridium-based materials with thermally activated delayed fluorescence for orange-red light-emitting electrochemical cells. Dyes and Pigments, 2022, 203, 110346.	3.7	15
3	Non-invasive probing of dynamic ion migration in light-emitting electrochemical cells by an advanced nanoscale confocal microscope. Optics Express, 2022, 30, 28817.	3.4	1
4	Optimizing carrier balance of a red quantum-dot light-emitting electrochemical cell with a carrier injection layer of cationic Ir(III) complex. Organic Electronics, 2021, 88, 106016.	2.6	8
5	Flexible light-emitting electrochemical cells on muscovite mica substrates. Organic Electronics, 2021, 96, 106218.	2.6	7
6	Perovskite Lightâ€Emitting Electrochemical Cells Employing Electron Injection/Transport Layers of Ionic Transition Metal Complexes. Chemistry - A European Journal, 2021, 27, 17785-17793.	3.3	12
7	Perovskite Lightâ€Emitting Electrochemical Cells Employing Electron Injection/Transport Layers of Ionic Transition Metal Complexes. Chemistry - A European Journal, 2021, 27, 17725-17725.	3.3	2
8	Highly efficient blue and white light-emitting electrochemical cells employing substrates containing embedded diffusive layers. Organic Electronics, 2020, 77, 105515.	2.6	20
9	Recent Progress in White Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2020, 30, 1906898.	14.9	49
10	Alkylâ€5pacer Enhancement in Performance of Lightâ€Emitting Electrochemical Cells. European Journal of Inorganic Chemistry, 2020, 2020, 3517-3526.	2.0	7
11	Hybrid White‣ightâ€Emitting Electrochemical Cells Based on a Blue Cationic Iridium(III) Complex and Red Quantum Dots. Chemistry - A European Journal, 2020, 26, 13668-13676.	3.3	7
12	Near-infrared light-emitting electrochemical cells based on the excimer emission of a cationic iridium complex. Journal of Materials Chemistry C, 2020, 8, 14378-14385.	5.5	12
13	An alternative composite electrode for efficient organic light-emitting diodes. Organic Electronics, 2020, 85, 105844.	2.6	7
14	Combinational Approach To Realize Highly Efficient Light-Emitting Electrochemical Cells. ACS Applied Materials & Interfaces, 2020, 12, 14254-14264.	8.0	28
15	Recent Advances in Optical Engineering of Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2020, 30, 1906788.	14.9	30
16	Efficient and Saturated Red Lightâ€Emitting Electrochemical Cells Based on Cationic Iridium(III) Complexes with EQE up to 9.4 %. Chemistry - A European Journal, 2019, 25, 13748-13758.	3.3	29
17	Cationic Ir ^{III} Emitters with Nearâ€Infrared Emission Beyond 800â€nm and Their Use in Lightâ€Emitting Electrochemical Cells. Chemistry - A European Journal, 2019, 25, 5489-5497.	3.3	42
18	Optical Techniques for Lightâ€Emitting Electrochemical Cells. ChemPlusChem, 2018, 83, 197-210.	2.8	33

HAI-CHING SU

#	Article	IF	CITATIONS
19	Tuning the Color Temperature of Whiteâ€Lightâ€Emitting Electrochemical Cells by Laserâ€Scanning Perovskiteâ€Nanocrystal Color Conversion Layers. ChemPlusChem, 2018, 83, 239-245.	2.8	13
20	Achieving highly saturated single-color and high color-rendering-index white light-emitting electrochemical cells by CsPbX3 perovskite color conversion layers. Journal of Materials Chemistry C, 2018, 6, 12808-12813.	5.5	27
21	Adjusting Correlated Color Temperature from White Light-Emitting Electrochemical Cells by Employing Electrochromic Filters. , 2018, , .		0
22	Effects of tuning the applied voltage pulse periods on the electroluminescence spectra of host–guest white light-emitting electrochemical cells. Physical Chemistry Chemical Physics, 2018, 20, 18226-18232.	2.8	27
23	Laser-Scanned Programmable Perovskite-Nanocrystal Color Conversion Layers for White Light-Emitting Electrochemical Cells. , 2018, , .		0
24	Dynamically tuning the correlated color temperature of white light-emitting electrochemical cells with electrochromic filters. Organic Electronics, 2017, 48, 248-253.	2.6	16
25	Pâ€114: Nonâ€Doped White Lightâ€Emitting Electrochemical Cells Employing Plasmonic Notch Filters. Digest of Technical Papers SID International Symposium, 2017, 48, 1686-1689.	0.3	1
26	Enhancing extracted electroluminescence from light-emitting electrochemical cells by employing high-refractive-index substrates. Organic Electronics, 2017, 51, 149-155.	2.6	20
27	Optical Engineering of Light-Emitting Electrochemical Cells Including Microcavity Effect and Outcoupling Extraction Technologies. , 2017, , 77-92.		1
28	Improving color saturation of blue light-emitting electrochemical cells by plasmonic filters. Organic Electronics, 2017, 51, 70-75.	2.6	10
29	Improving Charge Carrier Balance by Incorporating Additives in the Active Layer. , 2017, , 121-137.		0
30	Coherent and Polarized Random Laser Emissions from Colloidal CdSe/ZnS Quantum Dots Plasmonically Coupled to Ellipsoidal Ag Nanoparticles. Advanced Optical Materials, 2017, 5, 1600746.	7.3	39
31	Laser-Scanned Programmable Color Temperature of Electroluminescence from White Light-Emitting Electrochemical Cells. ACS Applied Materials & amp; Interfaces, 2016, 8, 31799-31805.	8.0	14
32	Plasmonic enhancement in electroluminescence from light-emitting electrochemical cells incorporating gold nanourchins. Journal of Materials Chemistry C, 2016, 4, 5610-5616.	5.5	10
33	Light-Emitting Electrochemical Cells. Lecture Notes in Quantum Chemistry II, 2016, , 197-225.	0.3	0
34	A demonstration of solid-state white light-emitting electrochemical cells using the integrated on-chip plasmonic notch filters. Journal of Materials Chemistry C, 2016, 4, 1599-1605.	5.5	18
35	Host-only solid-state near-infrared light-emitting electrochemical cells based on interferometric spectral tailoring. Physical Chemistry Chemical Physics, 2016, 18, 5034-5039.	2.8	41
36	Non-doped solid-state white light-emitting electrochemical cells employing the microcavity effect. Physical Chemistry Chemical Physics, 2015, 17, 6956-6962.	2.8	46

Hai-Ching Su

#	Article	IF	CITATIONS
37	Efficient solid-state white light-emitting electrochemical cells employing embedded red color conversion layers. Journal of Materials Chemistry C, 2015, 3, 2802-2809.	5.5	46
38	Incorporating a hole-transport material into the emissive layer of solid-state light-emitting electrochemical cells to improve device performance. Physical Chemistry Chemical Physics, 2015, 17, 17253-17259.	2.8	25
39	Enhancing device efficiencies of solid-state white light-emitting electrochemical cells by employing waveguide coupling. Journal of Materials Chemistry C, 2015, 3, 5665-5673.	5.5	45
40	Solid-state white light-emitting electrochemical cells based on scattering red color conversion layers. Journal of Materials Chemistry C, 2015, 3, 12492-12498.	5.5	26
41	Improving the carrier balance of light-emitting electrochemical cells based on ionic transition metal complexes. Dalton Transactions, 2015, 44, 8330-8345.	3.3	64
42	Recent Advances in Solidâ€State White Lightâ€Emitting Electrochemical Cells. Israel Journal of Chemistry, 2014, 54, 855-866.	2.3	61
43	Enhancing device efficiencies of solid-state near-infrared light-emitting electrochemical cells by employing a tandem device structure. Organic Electronics, 2014, 15, 711-720.	2.6	50
44	Effects of incorporating salts with various alkyl chain lengths on carrier balance of light-emitting electrochemical cells. Organic Electronics, 2014, 15, 2885-2892.	2.6	39
45	Improving device efficiencies of solid-state white light-emitting electrochemical cells by adjusting the emissive-layer thickness. Organic Electronics, 2013, 14, 2424-2430.	2.6	53
46	Highly efficient exciplex emission in solid-state light-emitting electrochemical cells based on mixed ionic hole-transport triarylamine and ionic electron-transport 1,3,5-triazine derivatives. Journal of Materials Chemistry C, 2013, 1, 4647.	5.5	53
47	Solution-processable tandem solid-state light-emitting electrochemical cells. Organic Electronics, 2013, 14, 3379-3384.	2.6	28
48	Extracting evolution of recombination zone position in sandwiched solid-state light-emitting electrochemical cells by employing microcavity effect. Organic Electronics, 2013, 14, 2269-2277.	2.6	59
49	Single-component polyfluorene electrolytes bearing different counterions for white light-emitting electrochemical cells. Organic Electronics, 2013, 14, 488-499.	2.6	39
50	Cationic Iridium Complexes with Intramolecular π–π Interaction and Enhanced Steric Hindrance for Solid-State Light-Emitting Electrochemical Cells. Inorganic Chemistry, 2012, 51, 12114-12121.	4.0	46
51	Efficient solid-state white light-emitting electrochemical cells based on phosphorescent sensitization. Journal of Materials Chemistry, 2012, 22, 22998.	6.7	51
52	Improving the balance of carrier mobilities of host–guest solid-state light-emitting electrochemical cells. Physical Chemistry Chemical Physics, 2012, 14, 1262-1269.	2.8	46
53	UV light-emitting electrochemical cells based on an ionic 2,2′-bifluorene derivative. Organic Electronics, 2012, 13, 1765-1773.	2.6	35
54	Pâ€118: Improving Balance of Carrier Mobilities by Doping a Carrier Trapper to Achieve Efficient Solidâ€State Lightâ€Emitting Electrochemical Cells. Digest of Technical Papers SID International Symposium, 2012, 43, 1503-1506.	0.3	0

HAI-CHING SU

#	Article	IF	CITATIONS
55	Tailoring carrier injection efficiency to improve the carrier balance of solid-state light-emitting electrochemical cells. Physical Chemistry Chemical Physics, 2012, 14, 9774.	2.8	45
56	Efficient and color-stable solid-state white light-emitting electrochemical cells employing red color conversion layers. Organic Electronics, 2012, 13, 483-490.	2.6	61
57	Bis(diphenylamino)-9,9′-spirobifluorene functionalized lr(<scp>iii</scp>) complex: a conceptual design en route to a three-in-one system possessing emitting core and electron and hole transport peripherals. Journal of Materials Chemistry, 2011, 21, 768-774.	6.7	35
58	Highly efficient double-doped solid-state white light-emitting electrochemical cells. Journal of Materials Chemistry, 2011, 21, 9653.	6.7	74
59	In situ electrochemical doping enhances the efficiency of polymer photovoltaic devices. Journal of Materials Chemistry, 2011, 21, 6217.	6.7	14
60	An ionic terfluorene derivative for saturated deep-blue solid state light-emitting electrochemical cells. Journal of Materials Chemistry, 2011, 21, 4175.	6.7	48
61	Tailoring balance of carrier mobilities in solid-state light-emitting electrochemical cells by doping a carrier trapper to enhance device efficiencies. Journal of Materials Chemistry, 2011, 21, 17855.	6.7	63
62	Phosphorescent sensitized fluorescent solid-state near-infrared light-emitting electrochemical cells. Physical Chemistry Chemical Physics, 2011, 13, 17729.	2.8	55
63	Solid-state light-emitting electrochemical cells employing phosphor-sensitized fluorescence. Journal of Materials Chemistry, 2010, 20, 5521.	6.7	43
64	Decreased Turnâ€On Times of Singleâ€Component Lightâ€Emitting Electrochemical Cells by Tethering an Ionic Iridium Complex with Imidazolium Moieties. Chemistry - an Asian Journal, 2008, 3, 1922-1928.	3.3	53
65	Solid-State White Light-Emitting Electrochemical Cells Using Iridium-Based Cationic Transition Metal Complexes. Journal of the American Chemical Society, 2008, 130, 3413-3419.	13.7	258
66	Pâ€151: Efficient Solutionâ€Processable Solidâ€State Lightâ€Emitting Electrochemical Cells Based on Hostâ€Guest Cationic Phosphorescent Complexes. Digest of Technical Papers SID International Symposium, 2007, 38, 768-771.	0.3	0
67	Pâ€152: Efficient Blue Phosphorescent OLEDs Employing Novel Oligocarbazoles as Highâ€Tripletâ€Energy Host Materials. Digest of Technical Papers SID International Symposium, 2007, 38, 772-775.	0.3	1
68	64.3: Highâ€Efficiency Phosphorescent White OLEDs Using Redâ€Emitting Osmium Complex and Blueâ€Emitting Iridium Complex. Digest of Technical Papers SID International Symposium, 2007, 38, 1772-1775.	0.3	2
69	Toward Functional π-Conjugated Organophosphorus Materials: Design of Phosphole-Based Oligomers for Electroluminescent Devices. Journal of the American Chemical Society, 2006, 128, 983-995.	13.7	255
70	11.4: Highly Efficient Blue Organic Electrophosphorescent Devices Based on 3,6-Bis(triphenylsilyl)Carbazole as the Host Material. Digest of Technical Papers SID International Symposium, 2006, 37, 139.	0.3	1
71	Efficient solid-state host-guest light-emitting electrochemical cells based on cationic transition metal complexes. Applied Physics Letters, 2006, 89, 261118.	3.3	97