
M Carmen Martinez-Tomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7707850/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Induced crystallographic changes in Cd1â^'xZnxO films grown on r-sapphire by AP-MOCVD: the effects of the Zn content when x ≤0.5. CrystEngComm, 2020, 22, 74-84.	2.6	2
2	Structural and morphological characterization of the Cd-rich region in Cd1-xZnxO thin films grown by atmospheric pressure metal organic chemical vapour deposition. Thin Solid Films, 2019, 683, 128-134.	1.8	5
3	The effects of thermal treatment on structural, morphological and optical properties of electrochemically deposited Bi2S3 thin films. Thin Solid Films, 2017, 626, 9-16.	1.8	13
4	Effect of Growth Temperature on the Structural and Morphological Properties of MgCdO Thin Films Grown by Metal Organic Chemical Vapor Deposition. Crystal Growth and Design, 2017, 17, 6303-6310.	3.0	11
5	Hybrid multiple diffraction in semipolar wurtzite materials: (f 01overline{1}2)-oriented ZnMgO/ZnO heterostructures as an illustration. Journal of Applied Crystallography, 2017, 50, 1165-1173.	4.5	3
6	STUDENT EVALUATION OF TEACHING (SET): ANALYSIS OF THE WORKLOAD IN THE 3TH YEAR OF THE PHYSICS DEGREE AT THE UNIVERSITY OF VALENCIA. , 2017, , .		0
7	Growth and characterization of Mg _{1â€x} Cd _x O thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 452-455.	0.8	6
8	Physics Demos for All UVEG Degrees: A Unique Project in Spain. Procedia, Social and Behavioral Sciences, 2016, 228, 628-632.	0.5	1
9	SubstructuralÂProperties and Anisotropic Peak Broadening in Zn1â^'x Mn x Te Films Determined by a Combined Methodology Based on SEM, HRTEM, XRD, and HRXRD. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 6645-6654.	2.2	2
10	MOCVD growth of CdO very thin films: Problems and ways of solution. Applied Surface Science, 2016, 385, 209-215.	6.1	8
11	Growth of tin oxide thin films composed of nanoparticles on hydrophilic and hydrophobic glass substrates by spray pyrolysis technique. Applied Surface Science, 2015, 357, 915-921.	6.1	8
12	One-step growth of isolated CdO nanoparticles on r-sapphire substrates by using the spray pyrolysis methodology. RSC Advances, 2014, 4, 23137.	3.6	12
13	Growth and characterization of self-assembled Cd _{1â~x} Mg _x O (0 ≤ ≤) nanoparticles on r-sapphire substrates. CrystEngComm, 2014, 16, 8969-8976.	2.6	4
14	VIS-UV ZnCdO/ZnO multiple quantum well nanowires and the quantification of Cd diffusion. Nanotechnology, 2014, 25, 255202.	2.6	11
15	Influence of metal organic chemical vapour deposition growth conditions on vibrational and luminescent properties of ZnO nanorods. Journal of Applied Physics, 2013, 113, .	2.5	11
16	Assessment of the out-plane and in-plane ordering of high quality ZnO nanorods by X-ray multiple diffraction. Thin Solid Films, 2013, 541, 107-112.	1.8	3
17	Non-radiative recombination centres in catalyst-free ZnO nanorods grown by atmospheric-metal organic chemical vapour deposition. Journal Physics D: Applied Physics, 2013, 46, 235302.	2.8	101
18	High resolution X-ray diffraction, X-ray multiple diffraction and cathodoluminescence as combined tools for the characterization of substrates for epitaxy: the ZnO case. CrystEngComm, 2013, 15, 3951.	2.6	3

#	Article	IF	CITATIONS
19	Non radiative recombination centers in ZnO nanorods. Materials Research Society Symposia Proceedings, 2013, 1538, 317-322.	0.1	2
20	High resolution x-ray diffraction methodology for the structural analysis of one-dimensional nanostructures. Journal of Applied Physics, 2012, 112, .	2.5	5
21	Morphology transitions in ZnO nanorods grown by MOCVD. Journal of Crystal Growth, 2012, 359, 122-128.	1.5	42
22	Synthesis and Characterization of ZnO Nano and Micro Structures Grown by Low Temperature Spray Pyrolysis and Vapor Transport. Journal of Nanoscience and Nanotechnology, 2012, 12, 6792-6799.	0.9	1
23	Enhanced UV emission from ZnO nanoflowers synthesized by the hydrothermal process. Journal Physics D: Applied Physics, 2012, 45, 425103.	2.8	38
24	Self-Assembled Zinc Oxide Quantum Dots Using Spray Pyrolysis Methodology. Crystal Growth and Design, 2011, 11, 3790-3801.	3.0	10
25	Spray pyrolytic deposition of ZnO thin layers composed of low dimensional nanostructures. Physics Procedia, 2010, 8, 14-17.	1.2	2
26	Crystal growth of ZnO micro and nanostructures by PVT on c-sapphire and amorphous quartz substrates. Physics Procedia, 2010, 8, 121-125.	1.2	1
27	Temperature- and illumination-induced charge-state change in divacancies of GaTe. Physical Review B, 2010, 81, .	3.2	1
28	Ellipsometric study of single-crystal γ-InSe from 1.5 to 9.2 eV. Applied Physics Letters, 2010, 96, 181902.	3.3	13
29	ZnO films grown by MOCVD on GaAs substrates: Effects of a Zn buffer deposition on interface, structural and morphological properties. Journal of Crystal Growth, 2009, 311, 2564-2571.	1.5	4
30	Above-bandgap ordinary optical properties of GaSe single crystal. Journal of Applied Physics, 2009, 106,	2.5	31
31	Thermal Creation of Defects in GaTe. Japanese Journal of Applied Physics, 2008, 47, 8719-8722.	1.5	1
32	Energetically deep defect centers in vapor-phase grown zinc oxide. Applied Physics A: Materials Science and Processing, 2007, 88, 141-145.	2.3	47
33	X-ray and transmission electron microscopy characterization of twinned CdO thin films grown on a-plane sapphire by metalorganic vapour phase epitaxy. Applied Physics A: Materials Science and Processing, 2007, 88, 61-64.	2.3	0
34	Negative U-properties of the oxygen-vacancy in ZnO. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 997-1000.	0.8	11
35	Growth of ZnO crystals by vapour transport: Some ways to act on physical properties. Crystal Research and Technology, 2006, 41, 742-747.	1.3	11
36	A new approach to the growth of ZnO by vapour transport. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1106-1114.	0.8	10

#	Article	IF	CITATIONS
37	X-ray characterization of CdO thin films grown ona-,c-,r- andm-plane sapphire by metalorganic vapour phase-epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1233-1238.	0.8	14
38	Faceting and structural anisotropy of nanopatterned CdO(110) layers. Journal of Applied Physics, 2005, 98, 034311.	2.5	3
39	Numerical study of the ZnO growth by MOCVD. Journal of Crystal Growth, 2004, 264, 237-245.	1.5	14
40	Study of the ZnO crystal growth by vapour transport methods. Journal of Crystal Growth, 2004, 270, 711-721.	1.5	26
41	Near band edge recombination mechanisms in GaTe. Physical Review B, 2003, 68, .	3.2	24
42	Recombination processes in unintentionally doped GaTe single crystals. Journal of Applied Physics, 2002, 92, 7330-7336.	2.5	21
43	Photoluminescence Study of ZnSe Single Crystals Obtained by Solid Phase Recrystallization under Different Pressure Conditions. Effects of Thermal Treatment. Physica Status Solidi A, 2002, 194, 338-348.	1.7	21
44	Numerical study of the growth conditions in an MOCVD reactor: application to the epitaxial growth of HgTe. Journal of Crystal Growth, 2002, 240, 124-134.	1.5	6
45	A numerical study of thermal conditions in the THM growth of HgTe. Journal of Crystal Growth, 2002, 243, 463-475.	1.5	13
46	CdTe crystal growth process by the Bridgman method: numerical simulation. Journal of Crystal Growth, 2001, 222, 435-451.	1.5	26
47	Deep center luminescence versus surface preparation of ZnSe single crystals. Journal of Materials Research, 2001, 16, 1245-1248.	2.6	7
48	Heat transfer simulation in a vertical Bridgman CdTe growth configuration. Journal of Crystal Growth, 1999, 197, 435-442.	1.5	12
49	Time resolved photoluminescence of Cd-doped InSe. European Physical Journal B, 1993, 91, 25-30.	1.5	4
50	Carrier scattering mechanisms in P-type indium selenide. Applied Physics A: Solids and Surfaces, 1989, 48, 445-450.	1.4	19
51	Improved systems for the measurement of hysteresis loops: DC and AC characterisation. Journal of Physics E: Scientific Instruments, 1987, 20, 861-865.	0.7	1
52	Acceptor levels in indium selenide. An investigation by means of the Hall effect, deep-level-transient spectroscopy and photoluminescence. Applied Physics A: Solids and Surfaces, 1987, 44, 249-260.	1.4	45
53	Heat treatment effect on p type Zn doped InP substrates. Revue De Physique Appliquée, 1987, 22, 1159-1168.	0.4	1
54	A numerical solution for the nonlinear diffusion equation of the electromagnetic field in ferromagnetic materials. Journal of Computational Physics, 1986, 65, 432-447.	3.8	1