Peter A Delamere

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7707208/publications.pdf

Version: 2024-02-01

106 papers

3,696 citations

36 h-index 55 g-index

114 all docs

114 docs citations

114 times ranked 1613 citing authors

#	Article	IF	CITATIONS
1	A Turbulent Heating Model Combining Diffusion and Advection Effects for Giant Planet Magnetospheres. Geophysical Research Letters, 2022, 49, .	1.5	1
2	Waterâ€Group Pickup Ions From Europaâ€Genic Neutrals Orbiting Jupiter. Geophysical Research Letters, 2022, 49, .	1.5	16
3	Evidence of Alfvénic Activity in Jupiter's Midâ€Toâ€High Latitude Magnetosphere. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	3
4	Dayside Transient Phenomena and Their Impact on the Magnetosphere and Ionosphere. Space Science Reviews, 2022, 218, .	3.7	35
5	Revisiting magnetospheric CAPS TOF data post Cassini. Icarus, 2021, 357, 114245.	1.1	O
6	On The Nature of Turbulent Heating and Radial Transport in Saturn's Magnetosphere. Journal of Geophysical Research: Space Physics, 2021, 126, .	0.8	6
7	Fieldâ€Aligned Currents in Auroral Vortices. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028583.	0.8	15
8	Kelvin–Helmholtzâ€Related Turbulent Heating at Saturn's Magnetopause Boundary. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028479.	0.8	12
9	MMS Observations of the Multiscale Wave Structures and Parallel Electron Heating in the Vicinity of the Southern Exterior Cusp. Journal of Geophysical Research: Space Physics, 2021, 126, e2019JA027698.	0.8	15
10	How Jupiter's unusual magnetospheric topology structures its aurora. Science Advances, 2021, 7, .	4.7	31
11	lon Dynamics in the Meso-scale 3-D Kelvin–Helmholtz Instability: Perspectives From Test Particle Simulations. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	2
12	The Kelvin-Helmholtz Instability From the Perspective of Hybrid Simulations. Frontiers in Astronomy and Space Sciences, $2021, 8, .$	1.1	2
13	ldentifying Active Kelvin–Helmholtz Vortices on Saturn's Magnetopause Boundary. Geophysical Research Letters, 2020, 47, e2019GL084206.	1.5	12
14	Implications for Magnetosphere″onosphere Coupling From Jupiter's System IV Quasiâ€Period. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027347.	0.8	3
15	Suprathermal Ions in the Outer Heliosphere. Astrophysical Journal, 2019, 876, 46.	1.6	15
16	Comparison Between Fluid Simulation With Test Particles and Hybrid Simulation for the Kelvinâ€Helmholtz Instability. Journal of Geophysical Research: Space Physics, 2019, 124, 6654-6668.	0.8	13
17	Hybrid Simulations of Magnetodisc Transport Driven by the Rayleighâ€∓aylor Instability. Journal of Geophysical Research: Space Physics, 2019, 124, 5107-5120.	0.8	4
18	Energetic Oxygen and Sulfur Charge States in the Outer Jovian Magnetosphere: Insights From the Cassini Jupiter Flyby. Geophysical Research Letters, 2019, 46, 11709-11717.	1.5	12

#	Article	IF	CITATIONS
19	Long-standing Small-scale Reconnection Processes at Saturn Revealed by Cassini. Astrophysical Journal Letters, 2019, 884, L14.	3.0	4
20	Magnetic Connectivity in the Corona as a Source of Structure in the Solar Wind. Journal of Geophysical Research: Space Physics, 2019, 124, 32-49.	0.8	16
21	Quantifying Mass and Magnetic Flux Transport in Saturn's Magnetosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 1916-1926.	0.8	6
22	Constraining the IMF at Pluto Using New Horizons SWAP Data and Hybrid Simulations. Journal of Geophysical Research: Space Physics, 2019, 124, 1568-1581.	0.8	2
23	Azimuthal Variation in the Io Plasma Torus Observed by the Hisaki Satellite From 2013 to 2016. Journal of Geophysical Research: Space Physics, 2019, 124, 3236-3254.	0.8	13
24	Kinetic Simulations of Electron Acceleration by Dispersive Scale Alfvén Waves in Jupiter's Magnetosphere. Geophysical Research Letters, 2019, 46, 3043-3051.	1.5	36
25	Pluto's Interaction With Energetic Heliospheric Ions. Journal of Geophysical Research: Space Physics, 2019, 124, 7413-7424.	0.8	4
26	Slowing of the Solar Wind in the Outer Heliosphere. Astrophysical Journal, 2019, 885, 156.	1.6	47
27	Flux Tube Entropy and Specific Entropy in Saturn's Magnetosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 1593-1611.	0.8	8
28	Response of Jupiter's Aurora to Plasma Mass Loading Rate Monitored by the Hisaki Satellite During Volcanic Eruptions at Io. Journal of Geophysical Research: Space Physics, 2018, 123, 1885-1899.	0.8	27
29	Asymmetric Kelvinâ€Helmholtz Instability at Jupiter's Magnetopause Boundary: Implications for Corotationâ€Dominated Systems. Geophysical Research Letters, 2018, 45, 56-63.	1.5	34
30	Threeâ€Dimensional Hybrid Simulation of Viscousâ€Like Processes at Saturn's Magnetopause Boundary. Geophysical Research Letters, 2018, 45, 7901-7908.	1.5	16
31	Determining the Alpha to Proton Density Ratio for the New Horizons Solar Wind Observations. Astrophysical Journal, 2018, 866, 85.	1.6	10
32	Recurrent Magnetic Dipolarization at Saturn: Revealed by Cassini. Journal of Geophysical Research: Space Physics, 2018, 123, 8502-8517.	0.8	14
33	Radial Transport and Plasma Heating in Jupiter's Magnetodisc. Journal of Geophysical Research: Space Physics, 2018, 123, 6611-6620.	0.8	15
34	Rotationally driven magnetic reconnection in Saturn's dayside. Nature Astronomy, 2018, 2, 640-645.	4.2	32
35	Plasma Transport Driven by the Threeâ€Dimensional Kelvinâ€Helmholtz Instability. Journal of Geophysical Research: Space Physics, 2017, 122, 10,382.	0.8	51
36	Local time asymmetry of Saturn's magnetosheath flows. Geophysical Research Letters, 2017, 44, 5877-5883.	1.5	23

#	Article	IF	CITATIONS
37	Local time dependence of turbulent magnetic fields in Saturn's magnetodisc. Journal of Geophysical Research: Space Physics, 2017, 122, 3972-3984.	0.8	21
38	Modeling physical chemistry of the Io plasma torus in two dimensions. Journal of Geophysical Research: Space Physics, 2016, 121, 6602-6619.	0.8	11
39	Plasma transport driven by the Rayleighâ€√aylor instability. Journal of Geophysical Research: Space Physics, 2016, 121, 5260-5271.	0.8	19
40	Magnetic reconnection with a fast perpendicular sheared flow. Journal of Geophysical Research: Space Physics, 2016, 121, 9427-9442.	0.8	10
41	Pluto's interaction with the solar wind. Journal of Geophysical Research: Space Physics, 2016, 121, 4232-4246.	0.8	32
42	Interaction between reconnection and Kelvin–Helmholtz at the high-latitude magnetopause. Advances in Space Research, 2016, 58, 231-239.	1.2	18
43	Europa's atmospheric neutral escape: Importance of symmetrical O2 charge exchange. Icarus, 2016, 264, 387-397.	1.1	29
44	Pluto's interaction with its space environment: Solar wind, energetic particles, and dust. Science, 2016, 351, aad9045.	6.0	60
45	Magnetic flux circulation in the rotationally driven giant magnetospheres. Journal of Geophysical Research: Space Physics, 2015, 120, 4229-4245.	0.8	67
46	Solar Wind and Internally Driven Dynamics: Influences on Magnetodiscs and Auroral Responses. Space Science Reviews, 2015, 187, 51-97.	3.7	36
47	Plasma conditions at Europa's orbit. Icarus, 2015, 261, 1-13.	1.1	62
48	Asymmetric Kelvinâ€Helmholtz propagation at Saturn's dayside magnetopause. Journal of Geophysical Research: Space Physics, 2015, 120, 1867-1875.	0.8	32
49	1. Transport of Mass, Momentum and Energy in Planetary Magnetodisc Regions. Space Science Reviews, 2015, 187, 229-299.	3.7	32
50	Solar wind at 33 AU: Setting bounds on the Pluto interaction for New Horizons. Journal of Geophysical Research E: Planets, 2015, 120, 1497-1511.	1.5	19
51	Interaction of magnetic reconnection and Kelvinâ€Helmholtz modes for large magnetic shear: 2. Reconnection trigger. Journal of Geophysical Research: Space Physics, 2014, 119, 808-820.	0.8	45
52	Interaction of magnetic reconnection and Kelvinâ∈Helmholtz modes for large magnetic shear: 1. Kelvinâ∈Helmholtz trigger. Journal of Geophysical Research: Space Physics, 2014, 119, 781-797.	0.8	67
53	Kelvin Helmholtz Instability in Planetary Magnetospheres. Space Science Reviews, 2014, 184, 1-31.	3.7	90
54	Multi-instrument study of the Jovian radio emissions triggered by solar wind shocks and inferred magnetospheric subcorotation rates. Planetary and Space Science, 2014, 99, 136-148.	0.9	36

#	Article	IF	CITATIONS
55	Plasma and energetic particle observations in Jupiter's deep tail near the magnetopause. Journal of Geophysical Research: Space Physics, 2014, 119, 6432-6444.	0.8	4
56	How could the lo footprint disappear?. Planetary and Space Science, 2013, 89, 102-110.	0.9	10
57	Magnetic signatures of Kelvinâ€Helmholtz vortices on Saturn's magnetopause: Global survey. Journal of Geophysical Research: Space Physics, 2013, 118, 393-404.	0.8	81
58	Evidence from radial velocity measurements of a global electric field in Saturn's inner magnetosphere. Journal of Geophysical Research: Space Physics, 2013, 118, 2122-2132.	0.8	51
59	Currentâ€voltage relation for the Saturnian system. Journal of Geophysical Research: Space Physics, 2013, 118, 3214-3222.	0.8	16
60	Magnetotail structure of the giant magnetospheres: Implications of the viscous interaction with the solar wind. Journal of Geophysical Research: Space Physics, 2013, 118, 7045-7053.	0.8	43
61	Conditions at the magnetopause of Saturn and implications for the solar wind interaction. Journal of Geophysical Research: Space Physics, 2013, 118, 3087-3095.	0.8	67
62	A 1â€D model of physical chemistry in Saturn's inner magnetosphere. Journal of Geophysical Research E: Planets, 2013, 118, 1567-1581.	1.5	21
63	Satellite-Induced Electron Acceleration and Related Auroras. Geophysical Monograph Series, 2013, , 295-304.	0.1	8
64	Auroral Signatures of Solar Wind Interaction at Jupiter. Geophysical Monograph Series, 2013, , 411-420.	0.1	5
65	Conditions at the expanded Jovian magnetopause and implications for the solar wind interaction. Journal of Geophysical Research, 2012, 117, .	3.3	51
66	Kelvinâ€Helmholtz instability at Saturn's magnetopause: Cassini ion data analysis. Journal of Geophysical Research, 2012, 117, .	3.3	38
67	Magnetosphereâ€ionosphere coupling at Jupiter: A parameter space study. Journal of Geophysical Research, 2012, 117, .	3.3	29
68	The roles of charge exchange and dissociation in spreading Saturn's neutral clouds. Journal of Geophysical Research, 2012, 117, .	3.3	42
69	Asymmetry of Io's outer atmosphere: Constraints from five Galileo flybys. Journal of Geophysical Research, 2012, 117, .	3.3	29
70	Comparative study of the power transferred from satellite-magnetosphere interactions to auroral emissions. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	35
71	Flow of mass and energy in the magnetospheres of Jupiter and Saturn. Journal of Geophysical Research, 2011, 116, .	3.3	258
72	Kelvin-Helmholtz instability at Saturn's magnetopause: Hybrid simulations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	56

#	Article	IF	Citations
73	Longitudinal modulation of hot electrons in the Io plasma torus. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	27
74	Modeling the Enceladus plume–plasma interaction. Geophysical Research Letters, 2010, 37, .	1.5	27
75	Power transmission and particle acceleration along the Io flux tube. Journal of Geophysical Research, 2010, 115, .	3.3	83
76	A sensitivity study of the Enceladus torus. Journal of Geophysical Research, 2010, 115, .	3.3	39
77	Solar wind interaction with Jupiter's magnetosphere. Journal of Geophysical Research, 2010, 115, .	3.3	128
78	Magnetosphereâ€ionosphere coupling at Jupiter: Effect of fieldâ€aligned potentials on angular momentum transport. Journal of Geophysical Research, 2010, 115, .	3.3	55
79	The Io UV footprint: Location, interâ€spot distances and tail vertical extent. Journal of Geophysical Research, 2009, 114, .	3.3	77
80	Hybrid code simulations of the solar wind interaction with Pluto. Journal of Geophysical Research, 2009, 114, .	3.3	33
81	Generation of parallel electric fields in the Jupiter–lo torus wake region. Journal of Geophysical Research, 2009, 114, .	3.3	33
82	Currentâ€voltage relation of a centrifugally confined plasma. Journal of Geophysical Research, 2009, 114, .	3.3	43
83	The Solar Wind Around Pluto (SWAP) Instrument Aboard New Horizons. Space Science Reviews, 2008, 140, 261-313.	3.7	102
84	Cassini UVIS observations of the Io plasma torus. Icarus, 2008, 194, 153-165.	1.1	56
85	Longitudinal plasma density variations at Saturn caused by hot electrons. Geophysical Research Letters, 2008, 35, .	1.5	16
86	A multispecies chemistry model of lo's local interaction with the Plasma Torus. Journal of Geophysical Research, 2008, 113 , .	3.3	47
87	Saturn's neutral torus versus Jupiter's plasma torus. Geophysical Research Letters, 2007, 34, .	1.5	40
88	lo-Jupiter interaction: AlfvÃ@n wave propagation and ionospheric AlfvÃ@n resonator. Journal of Geophysical Research, 2006, 111, .	3.3	40
89	Hybrid code simulations of the solar wind interaction with Comet 19P/Borrelly. Journal of Geophysical Research, 2006, 111 , .	3.3	18
90	Cassini UVIS observations of the lo plasma torusIII. Observations of temporal and azimuthal variability. Icarus, 2006, 180, 124-140.	1.1	59

#	Article	IF	Citations
91	Fundamentals of the Plasma Sail Concept: Magnetohydrodynamic and Kinetic Studies. Journal of Propulsion and Power, 2005, 21, 853-861.	1.3	37
92	Three-dimensional multi-fluid simulations of Pluto's magnetosphere: A comparison to 3D hybrid simulations. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	32
93	Radial variations in the Io plasma torus during the Cassini era. Journal of Geophysical Research, 2005, 110, .	3.3	75
94	North Star Plasma-Jet Space Experiment. Journal of Spacecraft and Rockets, 2004, 41, 483-489.	1.3	16
95	Dynamics of the Active Plasma Experiment North Star Artificial Plasma Jet. Journal of Spacecraft and Rockets, 2004, 41, 503-508.	1.3	9
96	Electric Field, Magnetic Field, and Density Measurements on the Active Plasma Experiment Sounding Rocket. Journal of Spacecraft and Rockets, 2004, 41, 521-532.	1.3	14
97	Pluto's kinetic interaction with the solar wind. Geophysical Research Letters, 2004, 31, .	1.5	29
98	Modeling temporal variability of plasma conditions in the Io torus during the Cassini era. Journal of Geophysical Research, 2004, 109, .	3.3	53
99	lo-related Jovian auroral arcs: Modeling parallel electric fields. Journal of Geophysical Research, 2003, 108, .	3.3	60
100	Momentum transfer between the Io plasma wake and Jupiter's ionosphere. Journal of Geophysical Research, 2003, 108, .	3.3	54
101	Modeling variability of plasma conditions in the Io torus. Journal of Geophysical Research, 2003, 108, .	3.3	103
102	Reduction of momentum transfer rates by parallel electric fields: A two-fluid demonstration. Physics of Plasmas, 2002, 9, 3130-3137.	0.7	8
103	Excitation of the FUV lo tail on Jupiter: Characterization of the electron precipitation. Journal of Geophysical Research, 2002, 107, SMP 30-1.	3.3	59
104	The APEX north star experiment: observations of high-speed plasma jets injected perpendicular to the magnetic field. Advances in Space Research, 2002, 29, 1317-1326.	1.2	15
105	Momentum transfer in the combined release and radiation effects satellite plasma injection experiments: The role of parallel electric fields. Physics of Plasmas, 2000, 7, 3771-3780.	0.7	15
106	A three-dimensional hybrid code simulation of the December 1984 solar wind AMPTE release. Geophysical Research Letters, 1999, 26, 2837-2840.	1.5	32