Francesco Barchiesi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7707171/publications.pdf

Version: 2024-02-01

85 papers

2,432 citations

30 h-index 243625 44 g-index

87 all docs

87 docs citations

87 times ranked

2978 citing authors

#	Article	IF	CITATIONS
1	Ceftazidime–Avibactam for the Treatment of Multidrug-Resistant Pathogens: A Retrospective, Single Center Study. Antibiotics, 2022, 11, 321.	3.7	5
2	Candidemia in Internal Medicine: Facing the New Challenge. Mycopathologia, 2022, 187, 181-188.	3.1	10
3	Efficacy of corticosteroid treatment for hospitalized patients with severe COVID-19: a multicentre study. Clinical Microbiology and Infection, 2021, 27, 105-111.	6.0	55
4	Clinical characteristics, management and health related quality of life in young to middle age adults with COVID-19. BMC Infectious Diseases, 2021, 21, 134.	2.9	23
5	Effectiveness of remdesivir in patients with COVID-19 under mechanical ventilation in an Italian ICU—authors' response. Journal of Antimicrobial Chemotherapy, 2021, 76, 1651-1652.	3.0	1
6	Candidemia in intensive care units over nine years at a large Italian university hospital: Comparison with other wards. PLoS ONE, 2021, 16, e0252165.	2.5	12
7	Bloodstream infections in the COVID-19 era: results from an Italian multi-centre study. International Journal of Infectious Diseases, 2021, 111, 31-36.	3.3	28
8	Cefiderocol treatment for carbapenem-resistant <i>Acinetobacter baumannii</i> infection in the ICU during the COVID-19 pandemic: a multicentre cohort study. JAC-Antimicrobial Resistance, 2021, 3, dlab174.	2.1	48
9	Effect of High-Titer Convalescent Plasma on Progression to Severe Respiratory Failure or Death in Hospitalized Patients With COVID-19 Pneumonia. JAMA Network Open, 2021, 4, e2136246.	5.9	50
10	Candidemia: Evolution of Drug Resistance and Novel Therapeutic Approaches. Infection and Drug Resistance, 2021, Volume 14, 5543-5553.	2.7	37
11	Development and validation of a prediction model for severe respiratory failure in hospitalized patients with SARS-CoV-2 infection: a multicentre cohort study (PREDI-CO study). Clinical Microbiology and Infection, 2020, 26, 1545-1553.	6.0	71
12	Effectiveness of remdesivir in patients with COVID-19 under mechanical ventilation in an Italian ICU. Journal of Antimicrobial Chemotherapy, 2020, 75, 3359-3365.	3.0	41
13	Species distribution and antifungal susceptibilities of bloodstream Candida isolates: a nine-years single center survey. Journal of Chemotherapy, 2020, 32, 244-250.	1.5	5
14	Multicentre validation of a EUCAST method for the antifungal susceptibility testing of microconidia-forming dermatophytes. Journal of Antimicrobial Chemotherapy, 2020, 75, 1807-1819.	3.0	37
15	Characterisation of candidemia in patients with recent surgery: A 7â€year experience. Mycoses, 2019, 62, 1056-1063.	4.0	8
16	Clinical and epidemiological characteristics of KPC-producing Klebsiella pneumoniae from bloodstream infections in a tertiary referral center in Italy. BMC Infectious Diseases, 2019, 19, 611.	2.9	20
17	Central venous catheter unrelated candidemia influences the outcome of infection in patients with solid tumors. European Journal of Clinical Microbiology and Infectious Diseases, 2019, 38, 1499-1505.	2.9	3
18	Prevalence and predictors of malignancies in HIV patients: results of a retrospective multicentric Italian cohort. Infezioni in Medicina, 2019, 27, 53-57.	1.1	1

#	Article	IF	Citations
19	Estimated burden of fungal infections in Italy. Journal of Infection, 2018, 76, 103-106.	3.3	11
20	High Rate of Ceftobiprole Resistance among Clinical Methicillin-Resistant <i>Staphylococcus aureus</i> Isolates from a Hospital in Central Italy. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	25
21	Fungicidal activity and PK/PD of caspofungin as tools to guide antifungal therapy in a fluconazole-resistant <i>C. parapsilosis</i> candidemia. Journal of Chemotherapy, 2017, 29, 376-379.	1.5	6
22	Candidemia in the elderly: What does it change?. PLoS ONE, 2017, 12, e0176576.	2.5	59
23	Delay of antifungal therapy influences the outcome of invasive aspergillosis in experimental models of infection. Journal of Antimicrobial Chemotherapy, 2016, 71, 2230-2233.	3.0	13
24	Carbapenem-Resistant Klebsiella pneumoniae influences the outcome of early infections in liver transplant recipients. BMC Infectious Diseases, 2016, 16, 538.	2.9	24
25	Factors related to outcome of bloodstream infections due to Candida parapsilosis complex. BMC Infectious Diseases, 2016, 16, 387.	2.9	38
26	Epidemiology, clinical characteristics, and outcome of candidemia in a tertiary referral center in Italy from 2010 to 2014. Infection, 2016, 44, 205-213.	4.7	81
27	Invasive aspergillosis in liver transplant recipients: Epidemiology, clinical characteristics, treatment, and outcomes in 116 cases. Liver Transplantation, 2015, 21, 204-212.	2.4	72
28	Epidemiology and outcome of systemic infections due to saprochaete capitata: case report and review of the literature. Infection, 2015, 43, 211-215.	4.7	36
29	Prevalence and predictors of malignancies in a polycentric cohort of HIV patients from Italy. Journal of the International AIDS Society, 2014, 17, 19652.	3.0	2
30	Comparison of liver fibrosis progression in HIV/HCV co-infected and HCV mono-infected patients by transient elastometry. Scandinavian Journal of Infectious Diseases, 2014, 46, 797-802.	1.5	3
31	<i>In vitro</i> activity of the protegrin <scp>lB</scp> â€367 alone and in combination compared with conventional antifungal agents against dermatophytes. Mycoses, 2014, 57, 233-239.	4.0	15
32	Evaluating Liver Fibrosis by Transient Elastometry in Patients With HIV-HCV Coinfection and Monoinfection. Hepatitis Monthly, 2014, 14, e15426.	0.2	9
33	Changing characteristics and risk factors of patients with and without incident HCV infection among HIV-infected individuals. Infection, 2013, 41, 987-990.	4.7	11
34	Effects of amphotericin B on Aspergillus flavus clinical isolates with variable susceptibilities to the polyene in an experimental model of systemic aspergillosis. Journal of Antimicrobial Chemotherapy, 2013, 68, 2587-2591.	3.0	13
35	Intestinal parasitosis: data analysis 2006-2011 in a teaching hospital of Ancona, Italy. Infezioni in Medicina, 2013, 21, 34-9.	1.1	6
36	Comparative Effects of Micafungin, Caspofungin, and Anidulafungin against a Difficult-To-Treat Fungal Opportunistic Pathogen, Candida glabrata. Antimicrobial Agents and Chemotherapy, 2012, 56, 1215-1222.	3.2	30

#	Article	IF	CITATIONS
37	In vitro and in vivo effects of echinocandins against Candida parapsilosis sensu stricto, Candida orthopsilosis and Candida metapsilosis. Journal of Antimicrobial Chemotherapy, 2012, 67, 2195-2202.	3.0	27
38	Disruption of Homocitrate Synthase Genes in Candida albicans Affects Growth But Not Virulence. Mycopathologia, 2010, 170, 397-402.	3.1	13
39	In vitro and in vivo activities of posaconazole against zygomycetes with various degrees of susceptibility. Journal of Antimicrobial Chemotherapy, 2010, 65, 2158-2163.	3.0	27
40	Anidulafungin in Combination with Amphotericin B against <i>Aspergillus fumigatus</i> Antimicrobial Agents and Chemotherapy, 2009, 53, 4035-4039.	3.2	14
41	In vitrosusceptibility of dermatophytes to conventional and alternative antifungal agents. Medical Mycology, 2009, 47, 321-326.	0.7	26
42	Evaluation of the Disk Diffusion Method Compared to the Microdilution Method in Susceptibility Testing of Anidulafungin against Filamentous Fungi. Journal of Clinical Microbiology, 2008, 46, 4071-4074.	3.9	7
43	Posaconazole against <i>Candida glabrata</i> Isolates with Various Susceptibilities to Fluconazole. Antimicrobial Agents and Chemotherapy, 2008, 52, 1929-1933.	3.2	14
44	Posaconazole Activity against Candida glabrata after Exposure to Caspofungin or Amphotericin B. Antimicrobial Agents and Chemotherapy, 2008, 52, 513-517.	3.2	9
45	Posaconazole Prophylaxis in Experimental Systemic Zygomycosis. Antimicrobial Agents and Chemotherapy, 2007, 51, 73-77.	3.2	35
46	Comparison between Disk Diffusion and Microdilution Methods for Determining Susceptibility of Clinical Fungal Isolates to Caspofungin. Journal of Clinical Microbiology, 2007, 45, 3529-3533.	3.9	18
47	Statistical Analyses of Correlation between Fluconazole MICs for Candida spp. Assessed by Standard Methods Set Forth by the European Committee on Antimicrobial Susceptibility Testing (E.Dis. 7.1) and CLSI (M27-A2). Journal of Clinical Microbiology, 2007, 45, 109-111.	3.9	49
48	Caspofungin in Combination with Amphotericin B against Candida parapsilosis. Antimicrobial Agents and Chemotherapy, 2007, 51, 941-945.	3.2	33
49	In vitro activity of the synthetic lipopeptide PAL-Lys-Lys-NH2 alone and in combination with antifungal agents against clinical isolates of Cryptococcus neoformans. Peptides, 2007, 28, 1509-1513.	2.4	16
50	Voriconazole and multidrug resistance in Candida albicans. Mycoses, 2007, 50, 109-115.	4.0	35
51	Effects of Caspofungin against <i>Candida guilliermondii</i> and <i>Candida parapsilosis</i> Antimicrobial Agents and Chemotherapy, 2006, 50, 2719-2727.	3.2	90
52	Candida guilliermondii Fungemia in Patients with Hematologic Malignancies. Journal of Clinical Microbiology, 2006, 44, 2458-2464.	3.9	64
53	In vitro activity of synthetic antimicrobial peptides against Candida. Polish Journal of Microbiology, 2006, 55, 303-7.	1.7	10
54	Efficacy of Caspofungin against Aspergillus terreus. Antimicrobial Agents and Chemotherapy, 2005, 49, 5133-5135.	3.2	12

#	Article	IF	CITATIONS
55	Caspofungin in Combination with Amphotericin B against Candida glabrata. Antimicrobial Agents and Chemotherapy, 2005, 49, 2546-2549.	3.2	23
56	Comparison of the Fungicidal Activities of Caspofungin and Amphotericin B against Candida glabrata. Antimicrobial Agents and Chemotherapy, 2005, 49, 4989-4992.	3.2	39
57	In Vitro Activities of Voriconazole in Combination with Three Other Antifungal Agents against Candida glabrata. Antimicrobial Agents and Chemotherapy, 2004, 48, 3317-3322.	3.2	30
58	Posaconazole and Amphotericin B Combination Therapy against Cryptococcus neoformans Infection. Antimicrobial Agents and Chemotherapy, 2004, 48, 3312-3316.	3.2	29
59	Sequential Therapy with Caspofungin and Fluconazole for <i>Candida albicans</i> Infection. Antimicrobial Agents and Chemotherapy, 2004, 48, 4056-4058.	3.2	8
60	Tolerance to amphotericin B in clinical isolates of Candida tropicalis. Diagnostic Microbiology and Infectious Disease, 2004, 50, 179-185.	1.8	8
61	In vitro and in vivo anticryptococcal activities of a new pyrazolo-isothiazole derivative. Journal of Antimicrobial Chemotherapy, 2003, 51, 167-170.	3.0	5
62	Antifungal susceptibility patterns of yeast isolates causing bloodstream infections. Journal of Antimicrobial Chemotherapy, 2003, 51, 431-433.	3.0	8
63	Point prevalence, microbiology and fluconazole susceptibility patterns of yeast isolates colonizing the oral cavities of HIV-infected patients in the era of highly active antiretroviral therapy. Journal of Antimicrobial Chemotherapy, 2002, 50, 999-1002.	3.0	43
64	In vitro effect of short-term exposure to two synthetic peptides, alone or in combination with clarithromycin or rifabutin, on Cryptosporidium parvum infectivity. Peptides, 2002, 23, 1015-1018.	2.4	3
65	Interactions of Posaconazole and Flucytosine against Cryptococcus neoformans. Antimicrobial Agents and Chemotherapy, 2001, 45, 1355-1359.	3.2	37
66	In Vitro Activity of Posaconazole against Clinical Isolates of Dermatophytes. Journal of Clinical Microbiology, 2001, 39, 4208-4209.	3.9	53
67	Activity of the new antifungal triazole, posaconazole, against Cryptococcus neoformans. Journal of Antimicrobial Chemotherapy, 2001, 48, 769-773.	3.0	37
68	Short-Term Exposure to Membrane-Active Antibiotics Inhibits Cryptosporidium parvum Infection in Cell Culture. Antimicrobial Agents and Chemotherapy, 2000, 44, 3473-3475.	3.2	18
69	In Vitro Activities of the New Antifungal Triazole SCH 56592 against Common and Emerging Yeast Pathogens. Antimicrobial Agents and Chemotherapy, 2000, 44, 226-229.	3.2	75
70	Interactions between Triazoles and Amphotericin B against Cryptococcus neoformans. Antimicrobial Agents and Chemotherapy, 2000, 44, 2435-2441.	3.2	75
71	Experimental Induction of Fluconazole Resistance in Candida tropicalis ATCC 750. Antimicrobial Agents and Chemotherapy, 2000, 44, 1578-1584.	3.2	128
72	Inhibition of growth of Pneumocystis carinii by lactoferrins alone and in combination with pyrimethamine, clarithromycin and minocycline. Journal of Antimicrobial Chemotherapy, 2000, 46, 577-582.	3.0	50

#	Article	IF	CITATIONS
73	In-vitro activity and killing effect of polycationic peptides on methicillin-resistant Staphylococcus aureus and interactions with clinically used antibiotics. Diagnostic Microbiology and Infectious Disease, 2000, 38, 115-118.	1.8	70
74	In-vitro activity of rifabutin and albendazole singly and in combination with other clinically used antimicrobial agents against Pneumocystis carinii. Journal of Antimicrobial Chemotherapy, 1999, 44, 653-659.	3.0	3
75	In-vitro activity of dicationic aromatic compounds and fluconazole against Cryptococcus neoformans and Candida spp Journal of Antimicrobial Chemotherapy, 1999, 44, 223-228.	3.0	17
76	In-vitro interactions of itraconazole with flucytosine against clinical isolates of Cryptococcus neoformans. Journal of Antimicrobial Chemotherapy, 1999, 44, 65-70.	3.0	28
77	In-vitro activity of polycationic peptides against Cryptosporidium parvum, Pneumocystis carinii and yeast clinical isolates. Journal of Antimicrobial Chemotherapy, 1999, 44, 403-406.	3.0	26
78	Comparison of four methods for DNA typing of clinical isolates of Candida glabrata. Journal of Medical Microbiology, 1999, 48, 955-963.	1.8	11
79	Antimicrobial activity of polycationic peptides. Peptides, 1999, 20, 1265-1273.	2.4	55
80	<i>In vitro</i> activity of five antifungal agents against clinical isolates of <i>Saccharomyces cerevisiae</i> . Medical Mycology, 1998, 36, 437-440.	0.7	21
81	Comparison of Three Methods for Testing Azole Susceptibilities of <i>Candida albicans</i> Strains Isolated Sequentially from Oral Cavities of AIDS Patients. Journal of Clinical Microbiology, 1998, 36, 1578-1583.	3.9	17
82	Evaluation of the E test system versus a microtitre broth method for antifungal susceptibility testing of yeasts against fluconazole and itraconazole. Journal of Antimicrobial Chemotherapy, 1995, 36, 93-100.	3.0	43
83	Electrophoretic karyotype and in vitro antifungal susceptibility of Cryptococcus neoformans isolates from AIDS patients. Diagnostic Microbiology and Infectious Disease, 1995, 23, 99-103.	1.8	25
84	Effect of pentamidine on the growth of Cryptococcus neoformans. Journal of Antimicrobial Chemotherapy, 1994, 33, 1229-1232.	3.0	14
85	Turbidimetric and visual criteria for determining the in vitro activity of six antifungal agents againstCandida spp. andCryptococcus neoformans. Mycopathologia, 1993, 124, 19-25.	3.1	25