Itaciara Nunes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7707082/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Knowledge, attitudes and practices in food safety and the presence of coagulase-positive staphylococci on hands of food handlers in the schools of Camaçari, Brazil. Food Control, 2012, 27, 206-213.	2.8	105
2	Active biocomposites of cassava starch: The effect of yerba mate extract and mango pulp as antioxidant additives on the properties and the stability of a packaged product. Food and Bioproducts Processing, 2015, 94, 382-391.	1.8	89
3	Encapsulation of lycopene using spray-drying and molecular inclusion processes. Brazilian Archives of Biology and Technology, 2007, 50, 893-900.	0.5	87
4	Oil nanoencapsulation: development, application, and incorporation into the food market. Nanoscale Research Letters, 2019, 14, 9.	3.1	83
5	Outdoor pilot-scale cultivation of Spirulina sp. LEB-18 in different geographic locations for evaluating its growth and chemical composition. Bioresource Technology, 2018, 256, 86-94.	4.8	66
6	Physicochemical Characterization and Oxidative Stability of Microencapsulated Crude Palm Oil by Spray Drying. Food and Bioprocess Technology, 2016, 9, 124-136.	2.6	45
7	Spirulina sp. as a Bioremediation Agent for Aquaculture Wastewater: Production of High Added Value Compounds and Estimation of Theoretical Biodiesel. Bioenergy Research, 2021, 14, 254-264.	2.2	35
8	Obtenção de cristais de licopeno a partir de descarte de tomate. Food Science and Technology, 2004, 24, 440-447.	0.8	33
9	Photoprotection of Vitamins in Skimmed Milk by an Aqueous Soluble Lycopeneâ ^{~,} Gum Arabic Microcapsule. Journal of Agricultural and Food Chemistry, 2007, 55, 323-329.	2.4	32
10	Desenvolvimento e avaliação da eficácia de filmes biodegradáveis de amido de mandioca com nanocelulose como reforço e com extrato de erva-mate como aditivo antioxidante. Ciencia Rural, 2012, 42, 2085-2091.	0.3	32
11	Ultrasound-Assisted Extraction for the Recovery of Carotenoids from Guava's Pulp and Waste Powders. Plant Foods for Human Nutrition, 2020, 75, 63-69.	1.4	28
12	Innovative functional nanodispersion: Combination of carotenoid from Spirulina and yellow passion fruit albedo. Food Chemistry, 2019, 285, 397-405.	4.2	25
13	The potential of the pecan nut cake as an ingredient for the food industry. Food Research International, 2020, 127, 108718.	2.9	25
14	Clycerol increases growth, protein production and alters the fatty acids profile of Spirulina (Arthrospira) sp LEB 18. Process Biochemistry, 2019, 76, 40-45.	1.8	24
15	Bioactive Compounds and Stability of Organic and Conventional <i>Vitislabrusca</i> Grape Seed Oils. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 115-124.	0.8	21
16	Effect of the addition of Spirulina sp. biomass on the development and characterization of functional food. Algal Research, 2021, 58, 102387.	2.4	21
17	Brackish Groundwater from Brazilian Backlands in Spirulina Cultures: Potential of Carbohydrate and Polyunsaturated Fatty Acid Production. Applied Biochemistry and Biotechnology, 2020, 190, 907-917.	1.4	16
18	Combination of carotenoids from Spirulina and PLA/PLGA or PHB: New options to obtain bioactive nanoparticles. Food Chemistry, 2021, 346, 128742.	4.2	15

Itaciara Nunes

#	Article	IF	CITATIONS
19	Incorporação de urucum como aditivo antioxidante em embalagens biodegradáveis a base de quitosana. Ciencia Rural, 2013, 43, 544-550.	0.3	14
20	Prevalence and factors associated with vitamin A deficiency in children and adolescents. Jornal De Pediatria, 2014, 90, 486-492.	0.9	11
21	Innovative methodological approach using CIELab and dye screening for chemometric classification and HPLC for the confirmation of dyes in cassava flour: A contribution to product quality control. Food Chemistry, 2021, 365, 130446.	4.2	9
22	OBTAINING NANOCELLULOSE FROM GREEN COCONUT FIBERS AND INCORPORATION IN BIODEGRADABLE FILMS OF STARCH PLASTICIZED WITH GLYCEROL. Quimica Nova, 2014, , .	0.3	8
23	Increase in biomass productivity and protein content of Spirulina sp. LEB 18 (Arthrospira) cultivated with crude glycerol. Biomass Conversion and Biorefinery, 2022, 12, 597-605.	2.9	8
24	Effect of preparation practices and the cowpea cultivar Vigna unguiculata L.Walp on the quality and content of myo-inositol phosphate in akara (fried bean paste). Food Science and Technology, 2014, 34, 243-248.	0.8	6
25	Innovative approach for obtaining phenolic compounds from guava (Psidium guajava L.) coproduct using ionic liquid ultrasound-assisted extraction (IL-UAE). Biocatalysis and Agricultural Biotechnology, 2021, 38, 102196.	1.5	6
26	A Patent Data Analysis in Nanotechnology Applied to Essential Oils. Recent Patents on Nanotechnology, 2022, 16, 92-106.	0.7	4
27	Prospective study on microencapsulation of oils and its application in foodstuffs. Recent Patents on Nanotechnology, 2021, 15, .	0.7	4
28	Uses of ionic liquids to obtain bioactive compounds: insights from the main international regulations for technological applications. Critical Reviews in Food Science and Nutrition, 2023, 63, 9217-9232.	5.4	4
29	Influência da natureza do rejeito agroindustrial fermentado por Xanthomonas axonopodis pv. manihotis nas propriedades das gomas xantana resultantes. Polimeros, 2014, 24, 176-183.	0.2	3
30	Novel bioactive nanoparticles from crude palm oil and its fractions as foodstuff ingredients. Food Chemistry, 2022, 373, 131252.	4.2	3
31	Vantagens e desvantagens das colunas C18 e C30 para a separação de carotenóides por CLAE. BJPS: Brazilian Journal of Pharmaceutical Sciences, 2006, 42, 539-546.	0.5	2
32	Quality and Safety of Fresh Beef in Retail: A Review. Journal of Food Protection, 2022, 85, 435-447.	0.8	2
33	Efeito da adição de óleo de palma bruto nanoencapsulado na estabilidade oxidativa de molho para salada em teste de oxidação acelerada. Research, Society and Development, 2020, 9, e4229107841.	0.0	2
34	Technological Prospection of Oil Nanoparticles: Primary Characteristics and Profiles. Recent Patents on Nanotechnology, 2021, 15, 2-14.	0.7	1
35	Increasing the cell productivity of mixotrophic growth of Spirulina sp. LEB 18 with crude glycerol. Biomass Conversion and Biorefinery, 0, , 1.	2.9	0
36	The Toxicity of Oil Nanoparticles: A Review Focused on Food Science. Food Reviews International, 2023, 39, 3117-3133.	4.3	0

#	Article	IF	CITATIONS
37	Prospecção Tecnológica de Patentes sobre Hidromel: panorama atual e perspectivas futuras. Cadernos De Prospecção, 2022, 15, 912-928.	0.0	0