Tomoko Kubori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7707023/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural Basis of Ubiquitin Recognition by a Bacterial Ovarian Tumor Deubiquitinase LotA. Journal of Bacteriology, 2022, 204, JB0037621.	2.2	11
2	Recent advances in structural studies of the <i>Legionella pneumophila</i> Dot/Icm type IV secretion system. Microbiology and Immunology, 2022, 66, 67-74.	1.4	9
3	Requirement of phosphatidic acid binding for distribution of the bacterial protein Lpg1137 targeting syntaxin 17. Journal of Cell Science, 2022, 135, .	2.0	3
4	Reversible modification of mitochondrial ADP/ATP translocases by paired <i>Legionella</i> effector proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	6
5	Isolation and Characterization of a Novel Phage SaGU1 that Infects Staphylococcus aureus Clinical Isolates from Patients with Atopic Dermatitis. Current Microbiology, 2021, 78, 1267-1276.	2.2	17
6	Legionella hijacks the host Golgi-to-ER retrograde pathway for the association of Legionella-containing vacuole with the ER. PLoS Pathogens, 2021, 17, e1009437.	4.7	22
7	Protocol for imaging proteins associated with Legionella-containing vacuoles in host cells. STAR Protocols, 2021, 2, 100410.	1.2	0
8	Staphylococcal Phage in Combination with Staphylococcus epidermidis as a Potential Treatment for Staphylococcus aureus-Associated Atopic Dermatitis and Suppressor of Phage-Resistant Mutants. Viruses, 2021, 13, 7.	3.3	29
9	Legionella Manipulates Non-canonical SNARE Pairing Using a Bacterial Deubiquitinase. Cell Reports, 2020, 32, 108107.	6.4	19
10	Divergence of Legionella Effectors Reversing Conventional and Unconventional Ubiquitination. Frontiers in Cellular and Infection Microbiology, 2020, 10, 448.	3.9	31
11	Structural basis for effector protein recognition by the Dot/Icm Type IVB coupling protein complex. Nature Communications, 2020, 11, 2623.	12.8	29
12	Emerging insights into bacterial deubiquitinases. Current Opinion in Microbiology, 2019, 47, 14-19.	5.1	20
13	Isolation of the Dot/Icm Type IV Secretion System Core Complex from Legionella pneumophila. Methods in Molecular Biology, 2019, 1921, 241-247.	0.9	7
14	LotA, a <i>Legionella</i> deubiquitinase, has dual catalytic activity and contributes to intracellular growth. Cellular Microbiology, 2018, 20, e12840.	2.1	53
15	Bacterial secretion system skews the fate of Legionella-containing vacuoles towards LC3-associated phagocytosis. Scientific Reports, 2017, 7, 44795.	3.3	36
16	Subversion of Host Membrane Dynamics by the Legionella Dot/Icm Type IV Secretion System. Current Topics in Microbiology and Immunology, 2017, 413, 221-242.	1.1	13
17	Legionella RavZ Plays a Role in Preventing Ubiquitin Recruitment to Bacteria-Containing Vacuoles. Frontiers in Cellular and Infection Microbiology, 2017, 7, 384.	3.9	29
18	Isolation of the Dot/Icm Type IV Secretion System Core Complex from Legionella pneumophila for Negative Stain Electron Microscopy Studies. Bio-protocol, 2017, 7, e2229.	0.4	0

Томоко Кивогі

#	Article	IF	CITATIONS
19	2S-B1-2Autophagy-related Host System and Legionella. Microscopy (Oxford, England), 2017, 66, i14-i14.	1.5	0
20	Microbially cleaved immunoglobulins are sensed by the innate immune receptor LILRA2. Nature Microbiology, 2016, 1, 16054.	13.3	54
21	The Type IVB secretion system: an enigmatic chimera. Current Opinion in Microbiology, 2016, 29, 22-29.	5.1	68
22	Life with Bacterial Secretion Systems. PLoS Pathogens, 2016, 12, e1005562.	4.7	2
23	Molecular and structural analysis of Legionella Dotl gives insights into an inner membrane complex essential for type IV secretion. Scientific Reports, 2015, 5, 10912.	3.3	36
24	Native structure of a type IV secretion system core complex essential for <i>Legionella</i> pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11804-11809.	7.1	62
25	Hijacking the Host Proteasome for the Temporal Degradation of Bacterial Effectors. Methods in Molecular Biology, 2014, 1197, 141-152.	0.9	4
26	Modulation of the Ubiquitination Machinery by Legionella. Current Topics in Microbiology and Immunology, 2013, 376, 227-247.	1.1	34
27	Purification and Characterization of Legionella U-Box-Type E3 Ubiquitin Ligase. Methods in Molecular Biology, 2013, 954, 347-354.	0.9	4
28	2PT124 Legionella Dotl and DotJ form a multimeric subcomplex associated with the core complex of the Dot/Icm type IVB secretion system(The 50th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2012, 52, S125-S126.	0.1	0
29	Type IVB Secretion Systems of Legionella and Other Gram-Negative Bacteria. Frontiers in Microbiology, 2011, 2, 136.	3.5	135
30	Bacterial Effector-Involved Temporal and Spatial Regulation by Hijack of the Host Ubiquitin Pathway. Frontiers in Microbiology, 2011, 2, 145.	3.5	17
31	Crystal Structure of Legionella DotD: Insights into the Relationship between Type IVB and Type II/III Secretion Systems. PLoS Pathogens, 2010, 6, e1001129.	4.7	50
32	Legionella Metaeffector Exploits Host Proteasome to Temporally Regulate Cognate Effector. PLoS Pathogens, 2010, 6, e1001216.	4.7	162
33	<i>Legionella</i> translocates an E3 ubiquitin ligase that has multiple Uâ€boxes with distinct functions. Molecular Microbiology, 2008, 67, 1307-1319.	2.5	198
34	A pathway branching in transcription initiation in Escherichia coli. Molecular Microbiology, 2006, 59, 1807-1817.	2.5	56
35	Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature, 2006, 441, 637-640.	27.8	176
36	Structural Insights into the Assembly of the Type III Secretion Needle Complex. Science, 2004, 306, 1040-1042.	12.6	330

Томоко Кивогі

#	Article	IF	CITATIONS
37	Disruption of type III secretion in Salmonella enterica serovar Typhimurium by external guide sequences. Nucleic Acids Research, 2004, 32, 848-854.	14.5	25
38	Temporal Regulation of Salmonella Virulence Effector Function by Proteasome-Dependent Protein Degradation. Cell, 2003, 115, 333-342.	28.9	262
39	Synthesis and Localization of the Salmonella SPI-1 Type III Secretion Needle Complex Proteins PrgI and PrgJ. Journal of Bacteriology, 2003, 185, 3480-3483.	2.2	54
40	Salmonella Type III Secretion-Associated Protein InvE Controls Translocation of Effector Proteins into Host Cells. Journal of Bacteriology, 2002, 184, 4699-4708.	2.2	107
41	Molecular and functional analysis of the type III secretion signal of the Salmonella enterica InvJ protein. Molecular Microbiology, 2002, 46, 769-779.	2.5	71
42	Genetic Analysis of Assembly of the Salmonella enterica Serovar Typhimurium Type III Secretion-Associated Needle Complex. Journal of Bacteriology, 2001, 183, 1159-1167.	2.2	157
43	Molecular Characterization and Assembly of the Type III Protein Secretion System. Seibutsu Butsuri, 2001, 41, 306-308.	0.1	0
44	Molecular characterization and assembly of the needle complex of the <i>Salmonella typhimurium</i> type III protein secretion system. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 10225-10230.	7.1	315
45	Supramolecular Structure on the Salmonella typhimurium Cell Envelope Seibutsu Butsuri, 1999, 39, 116-118.	0.1	0
46	Bacterial flagellation and cell division. Genes To Cells, 1998, 3, 625-634.	1.2	59
47	Flagellar filament elongation can be impaired by mutations in the hook protein FlgE ofSalmonella typhimurium: a possible role of the hook as a passage for the anti-sigma factor FlgM. Molecular Microbiology, 1998, 27, 1129-1139.	2.5	16
48	Supramolecular Structure of the <i>Salmonella typhimurium</i> Type III Protein Secretion System. Science, 1998, 280, 602-605.	12.6	852
49	Physical interference between escherichia coli RNA polymerase molecules transcribing in tandem enhances abortive synthesis and misincorporation. Nucleic Acids Research, 1997, 25, 2640-2647.	14.5	20
50	Assembly of the switch complex onto the MS ring complex of Salmonella typhimurium does not require any other flagellar proteins. Journal of Bacteriology, 1997, 179, 813-817.	2.2	76
51	Purification and characterization of the flagellar hook–basal body complex of Bacillus subtilis. Molecular Microbiology, 1997, 24, 399-410.	2.5	37
52	A new model for transcription initiation and its regulation Seibutsu Butsuri, 1997, 37, 249-253.	0.1	0
53	A Branched Pathway in the Early Stage of Transcription byEscherichia coliRNA Polymerase. Journal of Molecular Biology, 1996, 256, 449-457.	4.2	93
54	Kinetics of Transcription in a Minute Column. Nucleic Acids Research, 1996, 24, 1380-1381.	14.5	3

#	Article	IF	CITATIONS
55	Morphological pathway of flagellar assembly in Salmonella typhimurium. Journal of Molecular Biology, 1992, 226, 433-446.	4.2	250