Bo Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7707017/publications.pdf

Version: 2024-02-01

687220 752573 20 1,852 13 20 citations h-index g-index papers 21 21 21 3307 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Activation of surface lattice oxygen in single-atom Pt/CeO ₂ for low-temperature CO oxidation. Science, 2017, 358, 1419-1423.	6.0	1,114
2	Fluorescent Probes Based on Nucleophilic Substitution–Cyclization for Hydrogen Sulfide Detection and Bioimaging. Chemistry - A European Journal, 2014, 20, 1010-1016.	1.7	204
3	Role of Active Phase in Fischer–Tropsch Synthesis: Experimental Evidence of CO Activation over Single-Phase Cobalt Catalysts. ACS Catalysis, 2018, 8, 7787-7798.	5.5	110
4	Li _{<i>x</i>} NiO/Ni Heterostructure with Strong Basic Lattice Oxygen Enables Electrocatalytic Hydrogen Evolution with Pt-like Activity. Journal of the American Chemical Society, 2020, 142, 12613-12619.	6.6	103
5	Trapping Hydrogen Sulfide (H ₂ S) with Diselenides: The Application in the Design of Fluorescent Probes. Organic Letters, 2015, 17, 1541-1544.	2.4	54
6	Enhancement of high-temperature selectivity on Cu-SSZ-13 towards NH3-SCR reaction from highly dispersed ZrO2. Applied Catalysis B: Environmental, 2020, 263, 118359.	10.8	42
7	Fluorescent Probes for Hydrogen Sulfide Detection. Asian Journal of Organic Chemistry, 2014, 3, 914-924.	1.3	38
8	Nitrogen Modified Carbon Nano-Materials as Stable Catalysts for Phosgene Synthesis. ACS Catalysis, 2016, 6, 5843-5855.	5 . 5	36
9	Importance of Methane Chemical Potential for Its Conversion to Methanol on Cuâ€Exchanged Mordenite. Chemistry - A European Journal, 2020, 26, 7563-7567.	1.7	31
10	Trail of sulfur during the desulfurization via reactive adsorption on Ni/ZnO. Green Energy and Environment, 2021, 6, 597-606.	4.7	24
11	Postsynthetic Oxidation of the Coordination Site in a Heterometallic Metal–Organic Framework: Tuning Catalytic Behaviors. Chemistry of Materials, 2020, 32, 5192-5199.	3.2	20
12	Dehydrogenative aromatization of 1-octene over multifunctional Ni/ZSM-5-P-Fe catalyst. Fuel, 2021, 299, 120890.	3.4	16
13	Efficient Cu catalyst for 5-hydroxymethylfurfural hydrogenolysis by forming Cu–O–Si bonds. Catalysis Science and Technology, 2020, 10, 7323-7330.	2.1	14
14	Slow generation of hydrogen sulfide from sulfane sulfurs and NADH models. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 542-545.	1.0	12
15	Hydrogen Sulfide Detection Using Nucleophilic Substitution–Cyclization-Based Fluorescent Probes. Methods in Enzymology, 2015, 554, 47-62.	0.4	10
16	Development of Ni/ZnO desulfurization adsorbent with high stability: Formation of Zn2SiO4 and the impact from substrate. Chemical Engineering Journal, 2021, 409, 127374.	6.6	9
17	The cooperation effect of Ni and Pt in the hydrogenation of acetic acid. Frontiers of Chemical Science and Engineering, 2022, 16, 397-407.	2.3	6
18	Elucidating the Cooperative Roles of Water and Lewis Acid–Base Pairs in Cascade C–C Coupling and Self-Deoxygenation Reactions. Jacs Au, 2021, 1, 1471-1487.	3.6	5

#	Article	IF	CITATION
19	Importance of Methane Chemical Potential for Its Conversion to Methanol on Cuâ€exchanged Mordenite. Chemistry - A European Journal, 2020, 26, 7515-7515.	1.7	3
20	Impact of Zr on the Activity of MoO3/Ce1â^xZrxO2 Catalysts for Sulfur-Resistant Methanation. Topics in Catalysis, 2021, 64, 582-590.	1.3	1