Yefei Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7706646/publications.pdf Version: 2024-02-01

VEEEL DEN

#	Article	IF	CITATIONS
1	Site effects by generalized inversion technique using strong motion recordings of the 2008 Wenchuan earthquake. Earthquake Engineering and Engineering Vibration, 2013, 12, 165-184.	1.1	39
2	Source parameters, path attenuation and site effects from strong-motion recordings of the Wenchuan aftershocks (2008–2013) using a non-parametric generalized inversion technique. Geophysical Journal International, 2018, 212, 872-890.	1.0	39
3	Strong-Motion Observations of the Lushan Earthquake on 20 April 2013. Seismological Research Letters, 2014, 85, 1043-1055.	0.8	28
4	Breakdown of Earthquake Self‣imilar Scaling and Source Rupture Directivity in the 2016–2017 Central Italy Seismic Sequence. Journal of Geophysical Research: Solid Earth, 2019, 124, 3898-3917.	1.4	23
5	Site classification for National Strong Motion Observation Network System (NSMONS) stations in China using an empirical H/V spectral ratio method. Journal of Asian Earth Sciences, 2017, 147, 79-94.	1.0	22
6	Improved HVSR site classification method for free-field strong motion stations validated with Wenchuan aftershock recordings. Earthquake Engineering and Engineering Vibration, 2011, 10, 325-337.	1.1	20
7	Five parameters for the evaluation of the soil nonlinearity during the Ms8.0 Wenchuan Earthquake using the HVSR method. Earth, Planets and Space, 2017, 69, .	0.9	19
8	Preliminary site classification of free-field strong motion stations based on Wenchuan earthquake records. Earthquake Science, 2010, 23, 101-110.	0.4	17
9	Correlation of Spectral Accelerations for Earthquakes in China. Bulletin of the Seismological Society of America, 2017, 107, 1213-1226.	1.1	17
10	Single‣tation Standard Deviation Using Strongâ€Motion Data from Sichuan Region, China. Bulletin of the Seismological Society of America, 2018, 108, 2237-2247.	1.1	16
11	Strongâ€Motion Observations of the 2017 MsÂ7.0 Jiuzhaigou Earthquake: Comparison with the 2013 MsÂ7.0 Lushan Earthquake. Seismological Research Letters, 2018, 89, 1354-1365.	0.8	15
12	Nonlinear seismic site response classification using K-means clustering algorithm: Case study of the September 6, 2018 Mw6.6 Hokkaido Iburi-Tobu earthquake, Japan. Soil Dynamics and Earthquake Engineering, 2020, 128, 105907.	1.9	14
13	Temporary strong-motion observation network for Wenchuan aftershocks and site classification. Engineering Geology, 2014, 180, 130-144.	2.9	13
14	Introduction of conditional mean spectrum and conditional spectrum in the practice of seismic safety evaluation in China. Journal of Seismology, 2018, 22, 1005-1024.	0.6	12
15	Near-field velocity pulse-like ground motions on February 6, 2018 MW6.4 Hualien, Taiwan earthquake and structural damage implications. Soil Dynamics and Earthquake Engineering, 2019, 126, 105784.	1.9	12
16	Disaggregation of probabilistic seismic hazard and construction of conditional spectrum for China. Bulletin of Earthquake Engineering, 2021, 19, 5769-5789.	2.3	12
17	Genetic algorithmâ€based ground motion selection method matching target distribution of generalized conditional intensity measures. Earthquake Engineering and Structural Dynamics, 2021, 50, 1497-1516.	2.5	11
18	lmprint of Rupture Directivity From Ground Motions of the 24 August 2016 <i>M</i> _{<i>w</i>} 6.2 Central Italy Earthquake. Tectonics, 2017, 36, 3178-3191.	1.3	11

Yefei Ren

#	Article	IF	CITATIONS
19	Implications of Local Sources to Probabilistic Tsunami Hazard Analysis in South Chinese Coastal Area. Journal of Earthquake and Tsunami, 2017, 11, 1740001.	0.7	10
20	Source Characteristics, Site Effects, and Path Attenuation from Spectral Analysis of Strongâ€Motion Recordings in the 2016 KaikÅura Earthquake Sequence. Bulletin of the Seismological Society of America, 2018, 108, 1757-1773.	1.1	10
21	Rupture Directivity from Strong-Motion Recordings of the 2013 Lushan Aftershocks. Bulletin of the Seismological Society of America, 2015, 105, 3068-3082.	1.1	8
22	Characteristics of strong motions and damage implications of M S6.5 Ludian earthquake on August 3, 2014. Earthquake Science, 2015, 28, 17-24.	0.4	8
23	Observations on Regional Variability in Ground-Motion Amplitude from Six Mw ~ 6.0 Earthquakes of the North–South Seismic Zone in China. Pure and Applied Geophysics, 2020, 177, 247-264.	0.8	7
24	Insights on nonlinear soil behavior and its variation with time at strong-motion stations during the Mw7.8 KaikÅura, New Zealand earthquake. Soil Dynamics and Earthquake Engineering, 2020, 136, 106215.	1.9	7
25	HVSR-based Site Classification Approach Using General Regression Neural Network (GRNN): Case Study for China Strong Motion Stations. Journal of Earthquake Engineering, 2022, 26, 8423-8445.	1.4	7
26	Simulating Groundâ€Motion Directivity Using Stochastic Empirical Green's Function Method. Bulletin of the Seismological Society of America, 2017, 107, 359-371.	1.1	6
27	Comparison of two great Chile tsunamis in 1960 and 2010 using numerical simulation. Earthquake Science, 2011, 24, 475-483.	0.4	4
28	Field survey around strong motion stations and its implications on the seismic intensity in the Lushan earthquake on April 20, 2013. Earthquake Science, 2013, 26, 241-250.	0.4	4
29	Probabilistic Tsunami Hazard Assessment for the Southeast Coast of China: Consideration of Both Regional and Local Potential Sources. Pure and Applied Geophysics, 2021, 178, 5061.	0.8	4
30	Seismic resilient three-stage enhancement for gas distribution network using computational optimization algorithms. Soil Dynamics and Earthquake Engineering, 2022, 152, 107057.	1.9	4
31	Empirical Correlations between Generalized Ground-Motion Intensity Measures for Earthquakes in China. Bulletin of the Seismological Society of America, 2021, 111, 274-294.	1.1	3
32	Investigating the Contribution of Stress Drop to Ground-Motion Variability by Simulations Using the Stochastic Empirical Green's Function Method. Pure and Applied Geophysics, 2019, 176, 4415-4430.	0.8	2
33	Integrating Effects of Source-Dependent Factors on Sediment-Depth Scaling of Additional Site Amplification to Ground-Motion Prediction Equation. Bulletin of the Seismological Society of America, 0, , .	1.1	2
34	Evaluation of Vector Hazard for Conditional Mean Spectrum with Different Definitions of Multivariate Exceedance Rate. Journal of Earthquake Engineering, 2023, 27, 1973-1992.	1.4	2
35	The study on standard of rock reference site. , 2011, , .		0